FEB 10, 2016 09:50 PM PST

Scripps Florida Researchers Develop 'LIGHTSABR'-A Cheap, Portable Drug-Discovery System

Screening large “libraries” of compounds to find those with a desired biological activity is a powerful method for discovering new drugs, but requires a large, expensive and dedicated facility. Now, scientists at the Florida campus of The Scripps Research Institute (TSRI) have devised the central component of a screening system that would be orders of magnitude smaller and cheaper.

“We’ve developed a device that can do the functional equivalent of high-throughput compound screening on an ultra-miniaturized scale,” said the study’s principal investigator Brian M. Paegel, an associate professor at TSRI.
Brian M. Paegel is an associate professor at the Florida campus of The Scripps Research Institute.

The advance, published recently online ahead of print in Analytical Chemistry, follows a previous study from the Paegel laboratory in ACS Combinatorial Science that described the synthesis of miniaturized DNA-encoded compound libraries. The new screening device is designed to work with the new type of library.

One-Bead, One-Compound

Current high-throughput screening systems typically occupy 10,000 square feet of space or more and cost millions of dollars. They rely heavily on robotic devices that retrieve compounds from the library, place each compound into a separate small well in an “assay microplate” and measure each compound’s biological activity—for example, whether the compound inhibits a particular enzyme involved in viral replication.

Being almost entirely automated and relatively quick, such systems can rapidly screen the tens or hundreds of thousands of compounds in a typical library. But the great cost of these high-throughput screening systems limits their use to locations at pharmaceutical companies and large research institutions. The Scripps Florida campus houses one of the most active high-throughput screening facilities outside the pharmaceutical industry.

The new approach starts with the use of “one-bead-one-compound” (OBOC) libraries, in which individual compounds are chemically attached to microscopic beads. Over the past two decades, many laboratories have begun to work with OBOC libraries of one type or another, which are so quickly and cheaply prepared and are so compact that such libraries are essentially laboratory consumables. “It is possible to generate an OBOC library of millions of compounds in a week for about $500,” said Alexander K. Price, a senior research associate in the Paegel laboratory and lead author of the new study.


There are considerable technical challenges involved in putting bead-borne compounds through miniature screening devices. But, as they report in their new paper, Paegel and Price were able to engineer a benchtop-scale device that meets these challenges and can screen OBOC libraries.

The device is built on the microfluidics principles that also underlie inkjet printer technology. Using a “suspension hopper,” which Paegel and Price described in a 2014 Analytical Chemistry paper, the device introduces OBOC library beads into tiny liquid droplets that contain the assay of interest, such as an enzymatic activity assay. The volume of these assay droplets is about 100,000 times less than the volumes used for high-throughput screening assays.

The device then frees each compound from its bead with a photochemical reaction induced by ultraviolet (UV) light and, after an appropriate period of incubation, records the result in each droplet.
Dubbed LIGHTSABR (Light-Induced and Graduated High-Throughput Screening After Bead Release) for its light-based cleavage of compounds from their carrier beads, the device overcomes significant technical hurdles concerning the smooth flow of droplets, the absorption of stray UV irradiation and calibration of the UV waveguide.

A key innovation is that the technique allows users to vary the UV illumination to adjust the amount of a compound cleaved from its bead—and thus adjust the dose of the compound being tested. The team successfully demonstrated this dosing function using an assay designed to find inhibitors of HIV-1 protease, a key enzyme involved in the replication of the virus that causes AIDS.

The next step for Paegel and Price is to apply the microfluidic LIGHTSABR and the laboratory’s DNA-encoded OBOC libraries. “In addition to antiviral compounds, we are also pursuing new antibiotics and other drug classes that address the emergence of resistance in rapidly evolving pathogens,” said Paegel.

“Hundreds of laboratories around the world could operate their own miniaturized screening facilities, using their own assays to go after targets that are of most interest to them,” said Price.
In addition to Paegel and Price, the study, “hνSABR: Photochemical Dose-Response Bead Screening in Droplets,” was authored by Andrew B. MacConnell of TSRI.

Funding for the research was provided by a Director’s New Innovator Award from the National Institutes of Health (OD008535) and the Defense Advanced Research Projects Agency (N66001-14-2-4057). To view the paper, see https://pubs.acs.org/doi/abs/10.1021/acs.analchem.5b04811
Brian Paegel Biosketch
The Paegel Lab
Analytical Chemistry paper

This article was originally published on scripps.edu.
About the Author
  • I love all things science and am passionate about bringing science to the public through writing. With an M.S. in Genetics and experience in cancer research, marketing and technical writing, it is a pleasure to share the latest trends and findings in science on LabRoots.
You May Also Like
JAN 16, 2019
JAN 16, 2019
Identifying Microbes That can Generate Electricity
Some microbes might be hugely beneficial to humans, such as in the production of energy and biofuels....
JAN 23, 2019
Chemistry & Physics
JAN 23, 2019
"Jumping Crystals" the Microscopic Acrobats
  Often compared to the kernels popping and bouncing under the heat conveyed through microwave,  the thermosalient ("thermo" relates to...
FEB 11, 2019
FEB 11, 2019
First Fabric to Automatically Regulate Temperature
In a study published in Science, researchers at the University of Maryland (UMD) have developed fabric that changes its insulating properties in response t...
MAR 08, 2019
Chemistry & Physics
MAR 08, 2019
Exoplanets' Unstable Orbits Could Be Due to Over Tilting
For almost a decade, thanks to an increased effort in exoplanet hunting such as NASA's Kepler mission, astronomers have identified a lot of Earth-like...
MAR 27, 2019
Space & Astronomy
MAR 27, 2019
GRAVITY Instrument Observes Exoplanet with Optical Interferometry for First Time
Astronomers use a bevy of different methods to analyze distant exoplanets, but the GRAVITY instrument attached to the European Space Observatory’s Ve...
APR 11, 2019
Earth & The Environment
APR 11, 2019
Young Sea Ice Melting Too Soon
Recent research has revealed a new development that may take us closer to an ice-free Arctic summer. Scientists consider the Russian marginal seas of the A...
Loading Comments...