MAY 17, 2020 11:55 AM PDT

Substantial Antiviral Response Seen in Adults Recovered from COVID-19

WRITTEN BY: Kara Marker

Some good news comes as researchers scramble for potential vaccine candidates amidst the global COVID-19 pandemic. Scientists from the La Jolla Institute for Immunology report that the human immune system is indeed capable of launching a full-fledged response when exposed to coronavirus. The report comes from a study of 20 adults who successfully recovered from COVID-19 without major problems.

The global search for SARS-CoV-19 vaccine candidates revolves around one big question: what is the human immune system capable of? Researchers know that in order to be successful with vaccination, the right candidate needs to be able to trigger an enduring, substantial immune response.

Another question also lingers: can exposure to other types of coronaviruses, like those that cause a mere cold, provide protective immunity? In the late 18th century, immunology pioneer Edward Jenner realized that infection with cowpox could provide an individual immunity against its more deadly and contagious cousin, smallpox, and the concept of vaccination was born. Perhaps scientists could make a similar connection in this 21st century pandemic.

"All efforts to predict the best vaccine candidates and fine-tune pandemic control measures hinge on understanding the immune response to the virus," explained La Jolla’s Shane Crotty, PhD.

The new study builds off of a previous bioinformatics study of how to predict which viral fragments could activate human T cells and initiate an immune response. In the most recent study, researchers analyzed samples from 20 adults who had recovered from COVID-19 without major problems, indicating a “normal” immune response.

In this analysis, researchers aimed to see if T cells isolated from these adults recognized the viral fragments identified in the bioinformatics study. They considered two main types of fragments, those from the coronavirus’s namesake, the “spike protein,” and those not from the spike protein. Promisingly, they observed a strong T cell response to all types of viral fragments, spike protein and others.

Researchers also saw a multi-faceted T cell response, both from CD4 “helper” T cells, which activate B cells and contribute to antibody production, and from CD8 “killer” T cells, which target and destroy cells the virus has already infected, preventing further infection.

Additionally, researchers analyzed T cells from blood samples collected years before the current coronavirus pandemic, observing that these immune responses also showed signs of T cell reactivity to the SARS-CoV-19, more likely than not because of exposure to common cold-causing coronaviruses that could initiate a similar immune response.

"People were really worried that COVID-19 doesn't induce immunity, and reports about people getting re-infected reinforced these concerns, but knowing now that the average person makes a solid immune response should largely put those concerns to rest,” Crotty said.

While the scientific community is still cautious and considering that in some cases, an excessive immune response may be harmful, the present study offers some promising conclusions. Going forward, scientists anticipate using their findings to look for differences in immune responses in different outcomes of COVID-19, i.e. hospitalization, asymptomatic cases, and mild infection cases. This understanding of the COVID-19 immune response also offers a way to test experimental vaccines for efficacy. Scientists still need to confirm the protective effect of previous exposure to common cold coronaviruses.

Source: La Jolla Institute for Immunology, Cell, Baylor University Medical Center Proceedings

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
NOV 04, 2020
Coronavirus
Damaging Antibodies Can Lead to Blood Clots in COVID-19 Patients
NOV 04, 2020
Damaging Antibodies Can Lead to Blood Clots in COVID-19 Patients
COVID-19, the illness caused by the pandemic virus SARS-CoV-2, is known to cause blood clots all over the body in some p ...
DEC 03, 2020
Immunology
Cytokine Storms Aren't to Blame for COVID Respiratory Failures
DEC 03, 2020
Cytokine Storms Aren't to Blame for COVID Respiratory Failures
Many of the life-threatening symptoms of COVID-19 have been pinned on “cytokine storms” — immune syste ...
JAN 05, 2021
Immunology
Immune Imbalances Dictate COVID Symptom Severity
JAN 05, 2021
Immune Imbalances Dictate COVID Symptom Severity
COVID symptoms. “As it is often the case for pathogenic infections, the host immune system is a key player in vira ...
JAN 14, 2021
Immunology
Sunshine Vitamin Lowers COVID Mortality
JAN 14, 2021
Sunshine Vitamin Lowers COVID Mortality
Vitamin D is sometimes referred to as the “sunshine vitamin” because it’s synthesized in the skin afte ...
JAN 26, 2021
Immunology
COVID Vaccine Reactions: You're As Likely to Be Struck by Lightning
JAN 26, 2021
COVID Vaccine Reactions: You're As Likely to Be Struck by Lightning
In a period of just over three weeks, over four million people received Moderna’s COVID-19 vaccine. Out of all the ...
MAR 30, 2021
Clinical & Molecular DX
The COVID Eye of the Tiger
MAR 30, 2021
The COVID Eye of the Tiger
A wearable COVID screening device that uses light sensors to check for signs of infection has gotten FDA regulatory clea ...
Loading Comments...