FEB 01, 2019 10:11 PM PST

Re-purposing Anti-rejection Drug for Liver Cancers

WRITTEN BY: Nouran Amin

Scientists at the University of Pittsburgh School of Medicine have identified a molecular pathway in liver that can allow an anti-rejection drug to be repurposed for the treatment of certain liver cancers. "Current liver cancer therapies increase the likelihood of survival only by 3 or 4 months, so taking a precision medicine approach to identify the right patient could allow us to repurpose existing drugs to improve treatment success," says Satdarshan Monga, M.D., professor of pathology and founding director of the Pittsburgh Liver Research Center at Pitt's School of Medicine.

Learn more about liver cancers:

"What we've found is that liver cancers with a specific mutation in the β-catenin gene are possibly more susceptible to rapamycin, a commonly used anti-rejection medication in transplantation," says Monga. "We think this gives us a new precision medicine approach to develop therapies for liver cancer, which often are very resistant to treatment."

These are mouse liver tissues showing cells surrounding the central vein with active mTOR (red) and glutamine synthetase (green) being present in the same cells (yellow).

Credit: Cell Reports/University of Pittsburgh

Investigation of the molecular pathway began with measurements of high levels of a protein called mTOR--a nutrition and energy sensor crucial to cellular metabolism. The protein was present in the same cells where β-catenin was known to be active. This encouraged the researchers to see if the two proteins were functionally linked by creating a mouse model of liver cancer. They added a drug called rapamycin, a known immunosuppressant of mTOR, and found that the tumors decreased in size. This confirmed that mTOR palsy a major role in cancer growth of the liver. "I like to say these tumors are mTOR addicted," said Monga, who is senior author of the study as well as an investigator at the McGowan Institute of Regenerative Medicine and the UPMC Hillman Cancer Center. "Activating mTOR kicks up the protein-making factories in these cells, giving them the resources to divide and grow."

Results of the study were published in Cell Metabolism.

Source: Science Daily

About the Author
  • Nouran enjoys writing on various topics including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
NOV 05, 2018
Microbiology
NOV 05, 2018
Potential Antidote to Botulism is Found
A microbe called Clostridium botulinum and sometimes two other strains of Clostridium bacteria can make a toxic chemical called botulism....
NOV 21, 2018
Microbiology
NOV 21, 2018
Human Antibody That can Neutralize West Nile Virus is Found
In 1999, there were 62 cases of West Nile Virus in New York State. Since then it has spread around the United States....
DEC 26, 2018
Drug Discovery
DEC 26, 2018
Compound Shrinks Tumors of Sarcoma Cells
According to a multi-disciplinary study carried out by the University of Illinois, a compound was found to effectively shrink tumors in animal models by ta...
JAN 03, 2019
Health & Medicine
JAN 03, 2019
Antibiotic Resistance - A Global Health Threat
Antibiotics play a critical role in fighting off bacterial infections. Since the discovery of the first antibiotic, Penicillin, antibiotic treatment became an effective and safe tool which is...
JAN 20, 2019
Drug Discovery
JAN 20, 2019
Multiple sclerosis treatments hold long-term benefits
An international study, led by the Clinical Outcomes Research unit (CORe) at Royal Melbourne Hospital and University of Melbourne, concludes the importance...
FEB 11, 2019
Chemistry & Physics
FEB 11, 2019
Actinium-based Targeted Alpha Therapy Delivers A Combo Punch
Radiotherapy is a staple among many medical interventions to treat cancer. Besides external beam radiotherapy and sealed radio-source therapy, it is common...
Loading Comments...