DEC 19, 2017 11:11 AM PST

Resolution of the D4 Dopamine Receptor for Drug Discovery

Dopamine receptors are a class of G-protein-couple receptors which span cell membranes to facilitate signal transduction and multiple functions of the cell. G-protein coupled receptors, or GPCRs, also represent a class of highly targeted receptors therapeutically and dopamine receptors are most definitely included in this grouping. Dopamine receptors in specific are an essential part of the central nervous system where they act to facilitate neurotransmission and neuroendocrine signaling. They are integral to many neurological processes such as learning, motor skills, cognition, memory, etc., and alterations in their signaling or function underlies almost every neuropsychiatric disorder. This makes them ideal therapeutic targets in these types of disease. Recently a collaborative group out of Stanford University, California, the University of California, San Francisco, and the University of North Carolina, Chapel Hill, have determined the crystal structure of the D4 dopamine receptor family member. Why is this a good thing? According to this group, “the ability to efficiently exploit structure for specific probe discovery – rapidly moving from elucidating receptor structure to discovering previously unrecognized, selective agonists – testifies to the power of structure based approaches.” This crystal structure also provides a basis by which new therapeutic compounds can be virtually screened to test for binding to the structure, and if any are found to be promising leads, they can be followed up biologically.

Dopamine receptors are implicated in schizophrenia, drug abuse, and Parkinson’s disease to name a few, so identifying new molecules and compounds to combat any or all of them represents much needed progress forward in the field. There are currently many compounds thought to target dopamine receptors, and in specific the D4 family member, but the specificity of these drugs may be less than optimal and the molecular mechanisms underlying is not fully understood. Finding new agonists would not only potentially provide more selective modalities, but would also help us to better understand the biology. In the study mentioned above, the researchers were able to crystalize D4 dopamine receptor in an inactive state while bound to the antipsychotic drug nemonapride with high resolution. This data was then used for computational ligand discovery coupled with biological/pharmacological assays to verify novel, previously unrecognized probes with high selectivity and potency toward this receptor. This has provided the ground work for new therapeutic opportunities in treating a wide range of neuropsychiatric disorders.

Sources: Wikipedia, Science Magazine, Pixabay

About the Author
You May Also Like
OCT 16, 2018
Neuroscience
OCT 16, 2018
Your brain tells if a placebo can treat pain
Placebo effect and predicting when a particular subject will have a placebo response by using as little as psychological questionnaires....
DEC 11, 2018
Cancer
DEC 11, 2018
FDA approves two new drugs for cancers with specific genetic mutations
Last month the FDA approved two new drugs for cancer, both drugs target cancers with specific genetic mutations which made geneticists and oncologists optimistic on the future of cancer thera...
DEC 17, 2018
Health & Medicine
DEC 17, 2018
Microglial Priming And Pain
Microglia are in primed states when injury happens and acute exposure to opioids activates them further creating pain sensitivity....
DEC 23, 2018
Drug Discovery
DEC 23, 2018
Type 2 Diabetes Drug May Treat Heart Failure Syndrome
A drug used in the treatment of Type 2 Diabetes, by the name of Metformin, may soon be used to treat heart failure syndrome with preserved ejection fractio...
JAN 07, 2019
Cell & Molecular Biology
JAN 07, 2019
Researchers Develop an Experimental Therapy for Triple-negative Breast Cancer
Between 12 and 17% of all breast cancer cases are triple-negative, a highly aggressive type with few therapeutic options....
JAN 15, 2019
Immunology
JAN 15, 2019
A Possible Key to Severe Flu
By studying the impact that NPY and its receptor Y1R have on influenza in mice, the research group has now discovered that NPY produced in lung phagocytes can aggravate influenza....
Loading Comments...