DEC 27, 2017 05:47 AM PST

Tools, Probes, and Drug Compounds

As drug discovery and the technology utilized in drug discovery has continued to evolve and expand, the tools available to us have also expanded and are important to understand when considering drug discovery, especially in the context of high throughput screening or end goals of an assay. Some screening efforts may be done with a goal in mind to help figure out the biology underlying a certain system, while others may be more purely for clinical utility. In general there are three classes of molecules we use for medicinal chemistry and high throughput screening of large compound libraries. We have chemical tools which are simply backbone molecules that often have multiple analogs with unknown function, unknown targets, unknown cell permeability and a number of other unknown characteristics. Then there are chemical probes. These are small molecules designed toward a specific proteins or target usually aimed to inhibit its function or activity, and which are used to ask mechanistic and phenotypic questions. Chemical probes are better characterized than tool compounds, as we know much more about how and what they can do. Chemical probes have shown to be very useful as they are complementary to genetic based approaches such as RNA interterence, or nowadays CRISPR, but also because they provide unique advantages as they can reversibly alter the function of a protein in a rapid manner. The third class are drug compounds. Drugs are small molecules that are well characterized and tested, and have been optimized for in vivo use as well. There are benefits to each of these classes.

Drug and probe compounds have distinct difference in both purpose and requirements. Drugs are required to be safe and effective, they may not have a defined mechanism of action, usually accompanied with restrictions due to intellectual property or IP surrounding the drug design which may limit is availability for general research use. Drugs also must be bioavailable to humans, and the bar is set high for their physiochemical and pharmaceutic properties. They have set guidelines that must be met in terms of their molecular weight, lipophilicity, stability, they have defined crystal structures, and are able to be synthesized economically and reasonably. Probes, on the other hand, are more often used to ask specific biological questions, such as how does protein A interact with the ability of protein B in its regulation of protein C. For probe compounds, mechanism of action must be defined (unlike drugs), they must be selective toward their intended target, and they are freely available both for use and the data generated from their study. Probes are not required to have some drug-like properties such as bioavailability, and typically they have the added benefit of having a structurally related compound that is inactive towards the intended target that can serve as a negative control in studies using these molecules.

These three classes lay the foundation of medicinal chemistry and small molecules used for various aspects and phases of drug discovery. Often once a compound of interest is determined, structure will be optimized multiple times for functional usage. If a chemical probe proves useful toward studying and understanding a target, if it is also able to inhibit that target it a disease-relevant and meaningful way, this probe could be optimized toward being cell permeable, bioavailable, and be moved toward a drug. These afford us the opportunity to study the biology of disease, interacting properties of molecules, and drug efficacy in our indicated systems.

Sources: Nature Chemical Biology, Wikipedia, Pixabay, Youtube

About the Author
You May Also Like
NOV 12, 2018
Cancer
NOV 12, 2018
Targeted radiation therapy may provide new hope to children with difficult-to-treat liver cancer
Primary malignant liver tumors are rare in children with an occurrence rate of 1-2% of all childhood cancers. Radical surgical resection of the liver which means the removal of part of the li...
NOV 23, 2018
Cannabis Sciences
NOV 23, 2018
Rimonabant: A Cautionary Tale for Targeting the Endocannabinoid System
The evidence that the endocannabinoid system (ECS) is intimately involved in food intake has been steadily increasing. Thus, in attempts to treat obesity,...
NOV 24, 2018
Drug Discovery
NOV 24, 2018
New Anti-Malarial Drug Target in Cancer
For decades, anti-malaria drugs--known as Chloroquines, have used to treat cancer. But the role in repurposing these drugs for slowing tumor growth have ne...
DEC 11, 2018
Cancer
DEC 11, 2018
FDA approves two new drugs for cancers with specific genetic mutations
Last month the FDA approved two new drugs for cancer, both drugs target cancers with specific genetic mutations which made geneticists and oncologists optimistic on the future of cancer thera...
DEC 17, 2018
Drug Discovery
DEC 17, 2018
Alzheimer Preventing Drug Could Work Like A Vaccine
Researchers at UT Southwestern believe that a protein called ApoE is the primary factor in late-onset Alzheimer's disease. Such conclusion has to inspi...
JAN 24, 2019
Drug Discovery
JAN 24, 2019
Why Do Promising Cancer Drugs Fail?
After almost 20 years of a once-promising cancer drugs known as MMP inhibitors suddenly failed in clinical trials, scientists are now eager to provide an e...
Loading Comments...