JUL 10, 2016 7:00 PM PDT

Immune System Conserves Energy By Altering Metabolism

WRITTEN BY: Kara Marker
Many of the intricacies of the immune response during a pathogenic infection are yet to be fully understood. In a new study from the CNIC, researchers solved a bit more of the puzzle by uncovering how macrophages detect live bacteria and cause a domino-effect of reactions that alter mitochondrial metabolism to benefit the power of the immune response.
 Staining of mitochondria in a macrophage stimulated with bacteria.
From the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), in a paper published in Nature Immunology, scientists discovered the organization of the mitochondrial electron transport chain undergoing multiple structural changes in response to macrophages sensing bacteria. Certain compounds like lipopolysaccharides are unique to bacterial cell walls and can alert macrophages and other immune cells of an invader’s presence. What the researchers looked at in the current study was how the detection of bacterial biomarkers also led to changes in mitochondrial metabolism, and how these changes enhanced the immune response.
 
At the heart of mitochondrial metabolism is the electron transport chain (ETC). When a person eats a meal, the sugars and fats the body obtains by breaking it down provide energy for the ETC and its multiprotein complexes. These complexes assume several forms, named by scientists as I, II, III, and IV. Supercomplexes within the ETC provide structural stability and system efficiency, and these groupings also play a large role in metabolic changes during a bacterial invasion.
 
When a macrophage recognizes live bacteria and starts sending signals to the rest of the immune system that there is an intruder, the scientists saw in their studies that there is also a temporary reduction of supercomplexes associated with complex I in the mitochondria of these macrophages, while the respiratory activity is elevated. At the same time, various signaling pathways are activated by oxidative molecules, and then the pathways lead to the regulation of complex II activity. In this situation, complex II then promotes the release of immune signals called cytokines and other metabolites, which boost other parts of the immune response, enhancing the body’s ability to hone in on a bacterial invasion.
 
Scientists from the study believe that bacterial RNA and other unique factors that stimulate the immune system could be a way to learn more about creating more effective vaccines and therapies by improving the redirection of energy from metabolism that allows the immune system to focus on fighting the infection.
 

 
Source: CNIC
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
FEB 18, 2021
Immunology
Protective COVID Antibodies Found in Breast Milk
FEB 18, 2021
Protective COVID Antibodies Found in Breast Milk
University of Rochester researchers analyzing breast milk samples from mothers with COVID-19 found that it doesn’t ...
MAY 13, 2021
Immunology
Salmonella Vaccine Uses "Molecular Telephones" to Talk to the Immune System
MAY 13, 2021
Salmonella Vaccine Uses "Molecular Telephones" to Talk to the Immune System
Salmonella infections are a massive problem—Over 95 million people are affected by this foodborne illness every ye ...
MAY 12, 2021
Immunology
Illuminating the COVID-19 Disease Profile Puzzle
MAY 12, 2021
Illuminating the COVID-19 Disease Profile Puzzle
Teams of science experts from numerous disciplines have been collecting data on SARS-CoV-2 for over a year to understand ...
MAY 22, 2021
Drug Discovery & Development
Drug Combo Treats 86% of Patients with Gout
MAY 22, 2021
Drug Combo Treats 86% of Patients with Gout
Researchers at the University of Michigan have found that a combination of two drugs is twice as effective as current tr ...
MAY 24, 2021
Cell & Molecular Biology
Animal Trial of Asthma Vaccine Has Positive Results
MAY 24, 2021
Animal Trial of Asthma Vaccine Has Positive Results
Asthma is thought to affect 340 million people. A type of asthma that happens when allergens like dust mites are inhaled ...
JUN 08, 2021
Immunology
Fueling the Immune System's Killers
JUN 08, 2021
Fueling the Immune System's Killers
There’s a group of “killers” protecting your body against infections and eliminating potentially cance ...
Loading Comments...