FEB 10, 2017 9:59 AM PST

Superspreader phages transfer drug resistance

WRITTEN BY: Kerry Evans

Bacteriophages are everywhere. By everywhere, I mean there are about 10^31 of them on our planet - and that’s a lot.

 

Lucky for us, bacteriophages infect bacteria, not humans. That doesn’t mean they don’t have profound effects on us, however. A new report in the journal mBio from researchers at the University of Miami and the National Cancer Institute describes “superspreader” bacteriophages that promote DNA transfer from one bacterium to another - and some of this DNA codes for antibiotic resistance genes.

 

Bacteriophages infecting a bacterium

The end result of a phage infection is that bacteria lyse, releasing progeny phage. When the bacteria lyse, their contents - including DNA - are released into the environment. The researchers showed that some of this DNA is taken up by neighboring bacteria, and some phages - the superspreaders - are particularly good at making this happen.

 

The researchers started by infecting ampicillin-resistant E. coli with well-known phages (T4 or T7) or phages they collected from various environmental sources - soil, water, or feces (the resistance genes were carried on a plasmid). The phages lysed the E. coli cells, and the researchers collected DNA from the medium. Next, they applied this DNA to cultures of antibiotic-sensitive E. coli and found that the cells could be transformed with this DNA - the ampicillin-sensitive cells picked up the plasmid carrying the ampicillin-resistance gene, making the cells ampicillin resistant.

 

Interestingly, phages SUSP1 and SUSP2 caused E. coli to release large amounts of plasmid DNA into the culture medium, causing the group to dub these phages “superspreaders.”

 

They found that superspreaders are good at facilitating DNA transfer because they don’t produce endonucleases that degrade the bacteria’s DNA. Phage T4 makes endonucleases, for example, and does not facilitate DNA transfer. T4 mutants that lack endonucleases, however, effectively release and transfer intact bacterial DNA.

 

In a final experiment, the researchers wanted to study SUSP1 and SUSP2 in a “real world” situation - lab strains of E. coli are easily transformed with foreign DNA, but what about environmental isolates? The group collected soil bacteria and mixed them with SUSP1 and SUSP2 lysates from antibiotic-resistant E. coli. Sure enough, the antibiotic resistance plasmid was readily transferred to various species of soil bacteria.

 

What does all of this mean for phage therapy? According to the study authors, “the dispersal of intact plasmid DNA during phage therapy would be clinically undesirable...we recommend that therapeutic phage candidates be prescreened to prevent the inadvertent use of superspreader phages in biomedical applications.”

 

Sources: mBio, Virology Blog, Wikipedia

 

 
About the Author
Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
SEP 04, 2022
Microbiology
Sugar Disrupts the Microbiome, Altering Immunity
SEP 04, 2022
Sugar Disrupts the Microbiome, Altering Immunity
The microbes in our gut are indispensable to our health, and they are affected by what we eat. New research has used a m ...
SEP 13, 2022
Microbiology
H5N1 Sickens More Species, May Now be in the US Permanently
SEP 13, 2022
H5N1 Sickens More Species, May Now be in the US Permanently
H5N1 was first detected in 1996 in poultry in China's Guangdong province. Since then it has led to several outbreaks tha ...
SEP 11, 2022
Plants & Animals
Potential Treatment for Chagas Disease
SEP 11, 2022
Potential Treatment for Chagas Disease
Chagas disease is a condition caused by a parasitic infection; specifically, the parasite Trypanosoma cruzi (T. cruzi), ...
SEP 25, 2022
Microbiology
Understanding Oral Microbe Evolution, Which May Aid in the Hunt for Antibiotics
SEP 25, 2022
Understanding Oral Microbe Evolution, Which May Aid in the Hunt for Antibiotics
New research has suggested that bacteria that live in the human mouth could work as model organisms that can help us fin ...
NOV 07, 2022
Health & Medicine
Researchers Identify a Non-Antibiotic Compound that Targets Bacteria
NOV 07, 2022
Researchers Identify a Non-Antibiotic Compound that Targets Bacteria
Antibiotic resistance is an urgent, global threat to public health. It occurs when bacteria develop the ability to withs ...
NOV 22, 2022
Microbiology
Flu Killed Mice Eating a Processed Diet, but Spared Those on Grains
NOV 22, 2022
Flu Killed Mice Eating a Processed Diet, but Spared Those on Grains
When researchers have studied infections in animal models, they have typically focused on the pathogen and the host. But ...
Loading Comments...