JUN 02, 2020 7:00 AM PDT

Harnessing the Power of Protein Expression Systems in Vaccine Development


Event Date & Time
DATE:  June 2, 2020
TIME:   7:00am PT, 10:00am ET
In just a few months COVID-19 has risen from a regional crisis to a global threat, and drug makers are now scrambling to develop vaccines aimed at thwarting a pandemic. To meet this urgent and life-threatening situation, vaccine developers are actively seeking the most efficient and robust production platforms to accelerate development timelines. Throughput, productivity, and scalability of the expression platform as well as the availability of well-documented production cell lines are key selection criteria when initiating a vaccine development campaign under such urgent circumstances. To this end, the Gibco Expi Expression Systems are complete platforms that can accelerate vaccine development by enabling rapid, high-yield, and scalable production of proteins, viral antigens and viral-like particles from mammalian (ExpiCHO and Expi293) and insect (ExpiSf) cells. By providing flexible and highly productive expression systems for three different cell hosts that employ optimized and chemically defined components, the Expi systems support every stage of vaccine development. This unified, end-to-end approach reduces key product quality risks during development as one can use the same cell line from research to large-scale production while streamlining process development by utilizing integrated reagents for unmatched performance.
Learning Objectives:
  • Understand how to accelerate vaccine development timelines
  • Discover new technologies for rapid, high-yield, and scalable production of proteins, viral antigens, and viral-like particles
Webinars will be available for unlimited on-demand viewing after live event.
LabRoots is approved as a provider of continuing education programs in the clinical laboratory sciences by the ASCLS P.A.C.E. ® Program. By attending this webinar, you can earn 1 Continuing Education credit once you have viewed the webinar in its entirety.