MAR 13, 2019 9:10 AM PDT


Presented at: Neuroscience 2019
C.E. Credits: P.A.C.E. CE Florida CE
  • Professor, Department of Physiology & Biophysics, Neuroscience Focus Group, University of Washington
      Beth Buffalo is Professor of Physiology and Biophysics at the University of Washington and serves as the Chief of the Neuroscience Division of the Washington National Primate Research Center. She received her PhD in Neuroscience from the University of California, San Diego and was a postdoctoral fellow at the National Institutes of Health. Dr. Buffalo is a leading investigator in systems and cognitive neuroscience, and she has made fundamental contributions to our understanding of the neural mechanisms underlying memory in the primate brain. Her research has been supported by awards from the NIH, the Simons Foundation, the McKnight Foundation, Pfizer, and the Defense Advanced Research Projects Agency. Dr. Buffalo was the 2011 recipient of the Troland Research Award from the National Academy of Sciences for her innovative, multidisciplinary study of the hippocampus and the neural basis of memory.
    • Board of Governors Chair in Neuroscience, Director, Human Neurophysiology Research, Associate Professor, Neurosurgery, Neurology & Biomedical Sciences, Cedars-Sinai Medical Center
        Ueli Rutishauser, PhD, is an Associate Professor and Board of Governors Chair in Neurosciences in the Department of Neurosurgery, with joint appointments in the Departments of Neurology, Biomedical Sciences, and the Center for Neural Science and Medicine at Cedars-Sinai Medical Center. Concurrently, he holds a joint visiting faculty appointment at the Division of Biology and Biological Engineering at the California Institute of Technology.

        Dr. Rutishauser studied computer science for his BS, and then received his PhD in Computation & Neural Systems from Caltech. After postdoctoral studies at the Max Planck Institute for Brain Research in Frankfurt, Germany, he started his own lab in 2012. He received the Amercian Epilepsy Society Young Investigator Award (2007), the Ferguson Award (2008), the Troland Award by the National Academy of Sciences (2014), the Prize for Research in Scientific Medicine (2017), and the Freedman Prize for Exceptional Basic Research (2018). In 2014, he was named a Next Generation Leader by the Allen Institute for Brain Science and in 2018 he became an elected member of the Memory Disorders Research Society. He co-edited the textbook "Single neuron studies of the human brain" by MIT press and is one of the principal organizers of the Human Single Neuron meeting. His work has been published in a variety of journals, including Nature, Nature Neuroscience, Neuron, PNAS, Current Biology, PLOS Computational Biology, and Neural Computation.

        The Rutishauser laboratory is investigating the neural mechanisms of learning, memory and decision-making at the level of single neurons in humans. We are a systems neuroscience laboratory and use a combination of in vivo single-unit electrophysiology in humans, intracranial electrocorticography, eye tracking, behavior, and computational and theoretical approaches. We have helped pioneer the technique of human single-neuron recordings and continue to advance the tools, methods and surgical techniques that allow such experiments.
      • Assistant Professor, Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Rehab Neural Engineering Labs, Biomedical Engineer, VA R&D Center of Excellence
          Jennifer Collinger is an Assistant Professor in the Department of Physical Medicine and Rehabilitation at the University of Pittsburgh and a Research Biomedical Engineer at the VA R&D Center of Excellence. Dr. Collinger's research interests are related to the use of neuroprosthetics and neurorehabilitation to restore function for individuals with upper limb paralysis or loss. In order to do so, her research program focuses on understanding the motor control of upper limb movements in both able-bodied participants and people with motor impairments. Currently, she is part of a team that is developing intracortical brain-computer interface technology for individuals with tetraplegia. This provides a unique opportunity to study sensorimotor cortical activity during complex motor behaviors.


        Join us in this unique opportunity to directly address awardees of the research on humans division of BRAIN Initiative.

        Show Resources
        Show Resources