APR 30, 2015 7:34 AM PDT

New Mechanism Found to Control Cell Response to DNA Damage

WRITTEN BY: Judy O'Rourke
DNA can be damaged by different environmental insults, such as ultraviolet light, ionizing radiation, oxidative stress or certain drugs.

If the DNA is not repaired, cells may begin growing uncontrollably, leading to the development of cancer. Therefore, cells must maintain an intricate regulatory network to ensure that their DNA remains intact. Moffitt Cancer Center researchers have discovered a novel mechanism that controls a cell's response to DNA damage.

The protein SIRT1 plays an important role in controlling DNA damage. It can sense the presence of DNA damage, signal to other proteins that damage exists, aid in the repair of damage and stimulate cell death if the damage cannot be repaired.

Moffitt researchers found that SIRT1 is modified by a process called ubiquitination, in which a small residue called ubiquitin is added to SIRT1. This modification allows SIRT1 to relay information about DNA damage to other proteins, leading to either DNA repair or cell death.

The researchers performed studies to determine how ubiquitin modification changes SIRT1 function. They discovered that cells respond to ubiquitin modification of SIRT1 differently according to the type of environmental insult that occurs. If cells are exposed to a drug called etoposide, SIRT1 ubiquitination blocks cell death. However, if cells are exposed to oxidative stress, SIRT1 ubiquitination promotes cell death.

These results are important because they increase scientists' understanding of how proteins and cells function, potentially leading to more effective therapeutic drugs in the future.

"SIRT1 is known to be abnormally expressed in a variety of cancers and might be a good target for therapy," says Ed Seto, PhD, senior member, Cancer Biology and Evolution Program, Moffitt. "Ubiquitin-proteasome inhibitors have already been successfully used in cancer therapy and clinical trials. Therefore, this research might provide molecular bases and insights for developing additional therapeutic strategies in the future."

The research, in an article titled "Ubiquitinated Sirtuin 1 (SIRT1) Function Is Modulated during DNA Damage-induced Cell Death and Survival," was published in The Journal of Biological Chemistry.

[Source: Moffitt Cancer Center]
About the Author
Bachelor's
Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
JUL 21, 2022
Cell & Molecular Biology
'Junk' DNA May Stall Replication, Increasing Cancer Risk
JUL 21, 2022
'Junk' DNA May Stall Replication, Increasing Cancer Risk
Huge sections of the human genome are made up of highly repetitive sequences, areas where bases like ATATAT repeat in lo ...
JUL 21, 2022
Cancer
Can Microrobots Deliver Chemotherapy Directly to a Tumor?
JUL 21, 2022
Can Microrobots Deliver Chemotherapy Directly to a Tumor?
Microrobotics, also called microbotics, is a field of study focusing on miniature robotics capable of carrying tiny comp ...
SEP 13, 2022
Health & Medicine
Mesothelioma: What Is it and What can Patients Diagnosed With it Do to Improve Quality of Life
SEP 13, 2022
Mesothelioma: What Is it and What can Patients Diagnosed With it Do to Improve Quality of Life
A 2022 Centers for Diseases Control and Prevention (CDC) report showed only 2,385 mesothelioma cases in the United State ...
SEP 19, 2022
Cancer
Smoking Cessation Impacted by the COVID Pandemic
SEP 19, 2022
Smoking Cessation Impacted by the COVID Pandemic
Smoking remains a major risk factor for several types of cancer.  While the association between lung cancer and smo ...
SEP 29, 2022
Cancer
Customer-Led Innovation: Building the CTS Xenon
SEP 29, 2022
Customer-Led Innovation: Building the CTS Xenon
How customers and R&D scientists came together across oceans and a pandemic to create a next-gen cell therapy soluti ...
NOV 17, 2022
Cancer
Anti-Aging Supplement Linked to Aggressive Breast Cancer
NOV 17, 2022
Anti-Aging Supplement Linked to Aggressive Breast Cancer
Vitamin B3, also known as niacin, is a generic name for a group of biochemical compounds, including nicotinamide ribosid ...
Loading Comments...