APR 30, 2015 7:34 AM PDT

New Mechanism Found to Control Cell Response to DNA Damage

WRITTEN BY: Judy O'Rourke
DNA can be damaged by different environmental insults, such as ultraviolet light, ionizing radiation, oxidative stress or certain drugs.

If the DNA is not repaired, cells may begin growing uncontrollably, leading to the development of cancer. Therefore, cells must maintain an intricate regulatory network to ensure that their DNA remains intact. Moffitt Cancer Center researchers have discovered a novel mechanism that controls a cell's response to DNA damage.

The protein SIRT1 plays an important role in controlling DNA damage. It can sense the presence of DNA damage, signal to other proteins that damage exists, aid in the repair of damage and stimulate cell death if the damage cannot be repaired.

Moffitt researchers found that SIRT1 is modified by a process called ubiquitination, in which a small residue called ubiquitin is added to SIRT1. This modification allows SIRT1 to relay information about DNA damage to other proteins, leading to either DNA repair or cell death.

The researchers performed studies to determine how ubiquitin modification changes SIRT1 function. They discovered that cells respond to ubiquitin modification of SIRT1 differently according to the type of environmental insult that occurs. If cells are exposed to a drug called etoposide, SIRT1 ubiquitination blocks cell death. However, if cells are exposed to oxidative stress, SIRT1 ubiquitination promotes cell death.

These results are important because they increase scientists' understanding of how proteins and cells function, potentially leading to more effective therapeutic drugs in the future.

"SIRT1 is known to be abnormally expressed in a variety of cancers and might be a good target for therapy," says Ed Seto, PhD, senior member, Cancer Biology and Evolution Program, Moffitt. "Ubiquitin-proteasome inhibitors have already been successfully used in cancer therapy and clinical trials. Therefore, this research might provide molecular bases and insights for developing additional therapeutic strategies in the future."

The research, in an article titled "Ubiquitinated Sirtuin 1 (SIRT1) Function Is Modulated during DNA Damage-induced Cell Death and Survival," was published in The Journal of Biological Chemistry.

[Source: Moffitt Cancer Center]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
JUN 09, 2021
Clinical & Molecular DX
Faster, Cheaper Diagnosis of Rare Cancer in Fat Cells
JUN 09, 2021
Faster, Cheaper Diagnosis of Rare Cancer in Fat Cells
Scientists have created a gene panel test to quickly and more precisely diagnose common forms of liposarcoma. This break ...
JUN 09, 2021
Technology
Computer Program Generates Effective, Clinically-valid Treatment Plans for Cancer Patients
JUN 09, 2021
Computer Program Generates Effective, Clinically-valid Treatment Plans for Cancer Patients
In a recent study published in Nature Medicine, researchers at the Princess Margaret Cancer Centre offer evidence for th ...
JUN 15, 2021
Cancer
Red seaweed consumption is associated with a low risk of colon cancer - but why?
JUN 15, 2021
Red seaweed consumption is associated with a low risk of colon cancer - but why?
New research published in Marine Drugs explains why diets high in red seaweed are associated with a low risk of col ...
SEP 02, 2021
Immunology
Hobit Activates Cancer-Killing Immune Cells
SEP 02, 2021
Hobit Activates Cancer-Killing Immune Cells
Innate lymphoid cells, or ILCs, are specialized immune cells that are increasingly entering the research spotlight. Thes ...
OCT 04, 2021
Cancer
Predicting Progression-Free Survival in a Melanoma Study
OCT 04, 2021
Predicting Progression-Free Survival in a Melanoma Study
IsoPlexis’ Single-Cell Proteomics Predict Progression-Free Survival in Melanoma Study While advancements in oncolo ...
OCT 09, 2021
Cell & Molecular Biology
The Anti-Cancer, Copper-Binding Compounds Found in Fish
OCT 09, 2021
The Anti-Cancer, Copper-Binding Compounds Found in Fish
In the world's waterways, fish are confronted with endless challenges. For example, they have to defend themselves from ...
Loading Comments...