AUG 14, 2018 11:40 PM PDT

Using Arsenic to Enhance Cancer Therapies Beyond Leukemia

Arsenic is anecdotally known to many as a poison, but it has historically been a potent chemotherapy agent.  Chemotherapies are basically controlled poisons; it is not so far-fetched to think of arsenic in these terms.  Originally used to treat leukemia in the nineteenth century, known as Fowler’s solution, arsenic continues to be investigated and used in conjunction with all-trans retinoic acid (ATRA) for the treatment and cure of Acute Promyelocytic Leukemia (APL).  Specifically, arsenic trioxide (ATO) is the active component needed to promote the anti-leukemic process in the body.  ATO acts on APL by destroying the main fusion protein called PML-RARα which is the disease driving genetic change causing the arrest of myelocytic cell differentiation.  Myelocytic cells need retinoic acid, or vitamin A, to continue developing into mature neutrophils which is why ATRA was used in the first place. 

A recent study published in Nature Communications outlines how ATO and ATRA together target an oncogenic signaling regulator called Pin1.  Pin1 activity is documented in multiple cancers besides leukemia including breast and liver solid tumors.  ATO has been found to degrade Pin1 and ATRA controls the cell’s ability to take up ATO when it is in the body.    

This is an emerging area of research because solid tumors are challenging to target; tumors are often found to utilize multiple activation pathways to remain viable and support their rapid growth.  Blocking one pathway may not work but finding the target that drives a multitude of signaling mechanisms, like in the case of Pin1, provides promise.  ATO and ATRA together have been proven safe at clinical doses and inhibited triple negative breast cancer cells as well as other tumor initiating cells in animal models. 

In vivo studies and clinically relevant data have demonstrated the viability and efficacy of using arsenic in conjunction with other therapeutic agents, like in the case of ATO-ATRA and APL.  Because this combination was found to impede further tumor growth via tumor initiating cells, the tumor’s normal renewal and progression process is disrupted.  In fact, the authors found that Pin1 is “highly enriched” in breast tumor initiating cells and propose further study on whether Pin1 inhibitor drugs could target these specific breast tumor cells.

Sources: Nature Communications, Pathology Outlines, Nature Medicine, Journals of Hematology & Oncology,

About the Author
  • Mauri S. Brueggeman is a Medical Laboratory Scientist and Educator with a background in Cytogenetics and a Masters in Education from the University of Minnesota. She has worked in the clinical laboratory, taught at the University of Minnesota, and been in post secondary healthcare education administration. She is passionate about advances and leadership in science, medicine, and education.
You May Also Like
AUG 30, 2018
Genetics & Genomics
AUG 30, 2018
Genetic Changes can Help Diagnose Childhood Cancers Far Earlier
New research has revealed genetic rearrangements that happen far before bone cancer starts growing in children....
SEP 11, 2018
Cannabis Sciences
SEP 11, 2018
New Evidence Shows Marijuana Smoke is Not the Same as Cigarette Smoke, at Least, in Terms of Lung Disease.
A recent report published in the journal Breathe by scientists in the UK suggests that chronic marijuana smoking may not cause the same deleterious effects...
OCT 08, 2018
Immunology
OCT 08, 2018
Natural Killer Cells to Aid in Cancer Therapy
Researchers utilize nanoparticles to stimulate NK cells that induce tumor cells to express PDL1, a protein involved in immune response messaging...
NOV 06, 2018
Genetics & Genomics
NOV 06, 2018
New Gene is Implicated in a Rare Cancer
Rodents are known as common research models, but zebrafish have been gaining ground as an attractive alternative for many reasons....
NOV 13, 2018
Immunology
NOV 13, 2018
Yin & Yang: The Duality of Cancer-Associated Fibroblasts in Pancreatic Cancer
Pancreatic Cancer is a devastating disease. Fifty-five thousand new patients were diagnosed this year in the United States (1). It is painful and usua...
NOV 14, 2018
Immunology
NOV 14, 2018
Rapid Tumor Targeting
Researchers at the University of California Irvine have developed a technology that will rapidly identify and target T cell receptors for tumor specific antigens...
Loading Comments...