AUG 14, 2018 11:40 PM PDT

Using Arsenic to Enhance Cancer Therapies Beyond Leukemia

WRITTEN BY: Mauri Brueggeman

Arsenic is anecdotally known to many as a poison, but it has historically been a potent chemotherapy agent.  Chemotherapies are basically controlled poisons; it is not so far-fetched to think of arsenic in these terms.  Originally used to treat leukemia in the nineteenth century, known as Fowler’s solution, arsenic continues to be investigated and used in conjunction with all-trans retinoic acid (ATRA) for the treatment and cure of Acute Promyelocytic Leukemia (APL).  Specifically, arsenic trioxide (ATO) is the active component needed to promote the anti-leukemic process in the body.  ATO acts on APL by destroying the main fusion protein called PML-RARα which is the disease driving genetic change causing the arrest of myelocytic cell differentiation.  Myelocytic cells need retinoic acid, or vitamin A, to continue developing into mature neutrophils which is why ATRA was used in the first place. 

A recent study published in Nature Communications outlines how ATO and ATRA together target an oncogenic signaling regulator called Pin1.  Pin1 activity is documented in multiple cancers besides leukemia including breast and liver solid tumors.  ATO has been found to degrade Pin1 and ATRA controls the cell’s ability to take up ATO when it is in the body.    

This is an emerging area of research because solid tumors are challenging to target; tumors are often found to utilize multiple activation pathways to remain viable and support their rapid growth.  Blocking one pathway may not work but finding the target that drives a multitude of signaling mechanisms, like in the case of Pin1, provides promise.  ATO and ATRA together have been proven safe at clinical doses and inhibited triple negative breast cancer cells as well as other tumor initiating cells in animal models. 

In vivo studies and clinically relevant data have demonstrated the viability and efficacy of using arsenic in conjunction with other therapeutic agents, like in the case of ATO-ATRA and APL.  Because this combination was found to impede further tumor growth via tumor initiating cells, the tumor’s normal renewal and progression process is disrupted.  In fact, the authors found that Pin1 is “highly enriched” in breast tumor initiating cells and propose further study on whether Pin1 inhibitor drugs could target these specific breast tumor cells.

Sources: Nature Communications, Pathology Outlines, Nature Medicine, Journals of Hematology & Oncology,

About the Author
MEd
Mauri S. Brueggeman is a Medical Laboratory Scientist and Educator with a background in Cytogenetics and a Masters in Education from the University of Minnesota. She has worked in the clinical laboratory, taught at the University of Minnesota, and been in post secondary healthcare education administration. She is passionate about advances and leadership in science, medicine, and education.
You May Also Like
AUG 04, 2022
Cancer
Fiber in Green Bananas Protects from Some Cancers
AUG 04, 2022
Fiber in Green Bananas Protects from Some Cancers
Starch, a natural, sugar-containing component in many green plants, is present in high concentrations in foods such as p ...
AUG 18, 2022
Clinical & Molecular DX
New Research Investigates the Molecular Spread of Triple-Negative Breast Cancer
AUG 18, 2022
New Research Investigates the Molecular Spread of Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC) accounts for 10-15% of all breast cancer cases. TNBC is a term used to describe cas ...
SEP 11, 2022
Microbiology
Using Yeast Cells to Make a Cancer Treatment
SEP 11, 2022
Using Yeast Cells to Make a Cancer Treatment
Vinblastine and vincristine are both common chemotherapies that are used to treat several types of cancer. The drugs sto ...
OCT 25, 2022
Cancer
Study Identifies Patients at High Risk of Breast Cancer Metastasis
OCT 25, 2022
Study Identifies Patients at High Risk of Breast Cancer Metastasis
Central nervous system metastasis (mCNS) accounts for most brain and spinal cord tumors.  While recent advances hav ...
NOV 19, 2022
Clinical & Molecular DX
New Research Shows How Bacteria Could Help Tumors Progress and Resist Treatment
NOV 19, 2022
New Research Shows How Bacteria Could Help Tumors Progress and Resist Treatment
New research from the Fred Hutchinson Cancer Center in Seattle postulates that certain bacteria significantly impact the ...
NOV 29, 2022
Cell & Molecular Biology
How a Master Regulator May be Working to Protect Cancer
NOV 29, 2022
How a Master Regulator May be Working to Protect Cancer
Scientists have now discovered yet another way that MYC proteins can promote cancer. MYC has been called a master regula ...
Loading Comments...