OCT 19, 2019 8:24 AM PDT

Looking at the bigger picture: immune cells in a human body

While laboratory-conducted research has allowed for countless scientific advancements over the years, it may not come as a surprise that studying cells in a petri dish does not produce quite the exact same results as studying cells in the complex system of the human body.

"It is akin to observing animal behavior in a zoo versus in the wild,” said Russell Jones, Ph.D., the senior author of a study that was recently published in Immunity on the topic. “Our immune cells don't operate in a vacuum -- they work in concert with a host of other cells and factors, which influence how and when energy is used,” he added. Dr. Jones is head of Van Andel Institute's Metabolic and Nutritional Programming group, the group that conducted the research.

Jones and his fellow colleagues collaborated with Ralph DeBerardinis, M.D., Ph.D. to construct a map showing how T cells use nutrients under different conditions in living organisms. They say that this method will help them continue their investigation on how T cells use glucose to respond to pathogens, injury, or diseases. "Going forward, this new mapping technique will be invaluable as we pursue disease-specific studies," said first author of the study, Eric Ma, Ph.D. "It has the potential to be transformative."

Many of the scientific and medical communities’ previously conceived notions regarding immune metabolic processes came from studies based on cells grown in petri dishes. One such idea is the concept that specialized immune cells called T cells convert a sugar called glucose into energy to power cellular function.

However, this new research challenges that idea, declaring that T cells in a living system not only convert glucose into energy, they also use it as building blocks for replicating DNA and other maintenance tasks. According to Science Daily, “The team also discovered that the ways T cells process glucose evolves over the course of an immune response, which suggests T cells may use resources differently in the body when fighting a bacterial infection like Listeria or a disease like cancer.”

Scientists aim to deepen their understanding on how T cells use glucose to respond to pathogens and disease. Photo: Pixabay

"Immune cells are far more dynamic in how they respond metabolically to infections and diseases than we previously realized," Jones commented. "For a while, we've been at a point in metabolism research that's like standing in the dark under a street lamp -- we could only see immediately in front of us. These findings will help us turn on the floodlights and illuminate the way to a more complete understanding of what immune cells need for optimal function." The researchers hope their findings will help develop new diagnostic and treatment strategies.

Sources: Immunity, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
DEC 08, 2019
Cancer
DEC 08, 2019
Why do colder, wetter climates have a higher prevalence of cancer?
You might want to sit down, because this news may come as a surprise: researchers have found an association between cold, wet climates and increased cancer...
DEC 18, 2019
Genetics & Genomics
DEC 18, 2019
Learning More About The Genetic Adaptations Cancer Relies On
Cancer cells can adapt to mutations in the genome that might kill the cells by altering the activity of their genes....
JAN 09, 2020
Drug Discovery & Development
JAN 09, 2020
Can Cancer Drugs Treat Lung Damage?
Can therapeutics used in the treatment of cancer be a breakthrough for pulmonary disease? Specifically, chronic obstructive pulmonary disease (COPD)? &ldqu...
JAN 16, 2020
Cancer
JAN 16, 2020
FLASH proton therapy: faster and more effective
A new technique called FLASH proposes a new type of radiation therapy. The technique is composed of an ultra-high dose rate of radiotherapy and uses electr...
FEB 05, 2020
Genetics & Genomics
FEB 05, 2020
'Chromosome Shattering' is Common Across Cancer Types
A type of genetic mutation called chromothripsis was discovered a few years ago in chronic lymphocytic leukemia....
FEB 14, 2020
Cancer
FEB 14, 2020
Cataloging Cancer: DNA fingerprints at work
New research published as part of a global Pan-Cancer Project highlights the world’s most comprehensive catalog to date of DNA fingerprints of cancer...
Loading Comments...