NOV 22, 2019 4:54 AM PST

The cancerous fear of circular extrachromosomal DNA

New research published in Nature suggests that ring-shaped extrachromosomal DNA (ecDNA) is particularly abundant in tumor cells and plays a malicious role in the evolution of cancer. This research comes from investigators collaborating from the University of California San Diego, the UC San Diego branch of the Ludwig Institute for Cancer Research, Stanford University and the Howard Hughes Medical Institute.

We all know that DNA encodes information in its sequences – remember, A, C, G, T? But DNA also encodes information in its shape. Interestingly, ecDNA, which refers to any DNA that is not on the chromosomes, be it inside or outside of a cell nucleus, differs structurally from that of DNA. That is noteworthy, says co-author of the study Paul S. Mischel, MD. "This is a paradigm shift. The shape of cancer ecDNA is different than normal DNA, and that has really important implications, both for our understanding of cancer biology and clinical impact.” Mischel is a professor in the UC San Diego School of Medicine Department of Pathology and a member of the Ludwig Institute.

New research shows circular ecDNA plays a scary role in cancer tumors. Photo: Pixabay

The researchers relied on several different advanced tools to conduct their study, including ultrastructural electron microscopy, long-range optical mapping and computational analysis of whole-genome sequencing. These technologies allowed them to determine how the shape of ecDNA affects function on an epigenetic level.

They discovered that circular ecDNA in cancer allows for more accessibility than normal DNA, meaning, similar to the structure of bacteria, genetic information can be rapidly transcribed and expressed. When it comes to cancer, this is a frightening feature because tumor cells can grow dangerously quickly and respond faster to their changing environment and potential threats.

"By showing that ecDNA is circular, then elucidating its epigenetic organization, we demonstrate something very powerful," said Mischel. "This unique shape in human cancer cells is quite unlike normal human DNA. It really shines a new light onto the 3D organization of the screwed-up cancer genome and epigenome, which now provides a mechanistic basis for understanding why certain tumor cells are so aggressive."

The biggest take-away from this research is that cancer cells are inherently distinct in their propagation in comparison to eukaryotic cells. As Science Daily details, “Rather than passing DNA to subsequent generations by dividing into genetically identical daughter cells -- a process called mitosis, involving paired chromosomes that divide and used by all eukaryotes -- bacteria and cancer propagate by parceling out ecDNA to daughter cells in a seemingly random way, providing a mechanism by which certain daughter cells could receive multiple cancerous copies within one cell division. It is a distinctly different process of inheritance which allows for more rapid evolution and genetic change.”

Sources: Nature, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
MAY 11, 2021
Immunology
Immune Cells Help Brain Tumors Spread, but We Can Stop Them
MAY 11, 2021
Immune Cells Help Brain Tumors Spread, but We Can Stop Them
Researchers have discovered how a glitch in the brain’s immune system can inadvertently cause an accelerated growt ...
MAY 10, 2021
Cell & Molecular Biology
Getting RNA-Based Medicine Past the Blood-Brain Barrier
MAY 10, 2021
Getting RNA-Based Medicine Past the Blood-Brain Barrier
RNA molecules serve several functions, one of which is to help the cell generate proteins from active genes. It also may ...
MAY 20, 2021
Cancer
High red meat consumption and low education level associated with early-onset colorectal cancer
MAY 20, 2021
High red meat consumption and low education level associated with early-onset colorectal cancer
Research published recently in JNCI Cancer Spectrum reports that higher red meat and alcohol consumption, as well as low ...
JUN 14, 2021
Cell & Molecular Biology
Can An Omega-3 Fatty Acid Destroy Tumors?
JUN 14, 2021
Can An Omega-3 Fatty Acid Destroy Tumors?
The body needs fatty acts for a variety of functions, and the health benefits of taking fatty acid supplements have long ...
JUN 27, 2021
Cancer
Are e-cigarettes actually helpful for smoking cessation?
JUN 27, 2021
Are e-cigarettes actually helpful for smoking cessation?
New research published in The Lancet Public Health reports on a study that looked at interventions targeting e-cigarette ...
JUL 16, 2021
Drug Discovery & Development
Machine Learning Ranks Cancer Drugs by Efficacy
JUL 16, 2021
Machine Learning Ranks Cancer Drugs by Efficacy
A machine learning algorithm developed by researchers at the Queen Mary University of London in the UK can rank cancer d ...
Loading Comments...