NOV 22, 2019 4:54 AM PST

The cancerous fear of circular extrachromosomal DNA

New research published in Nature suggests that ring-shaped extrachromosomal DNA (ecDNA) is particularly abundant in tumor cells and plays a malicious role in the evolution of cancer. This research comes from investigators collaborating from the University of California San Diego, the UC San Diego branch of the Ludwig Institute for Cancer Research, Stanford University and the Howard Hughes Medical Institute.

We all know that DNA encodes information in its sequences – remember, A, C, G, T? But DNA also encodes information in its shape. Interestingly, ecDNA, which refers to any DNA that is not on the chromosomes, be it inside or outside of a cell nucleus, differs structurally from that of DNA. That is noteworthy, says co-author of the study Paul S. Mischel, MD. "This is a paradigm shift. The shape of cancer ecDNA is different than normal DNA, and that has really important implications, both for our understanding of cancer biology and clinical impact.” Mischel is a professor in the UC San Diego School of Medicine Department of Pathology and a member of the Ludwig Institute.

New research shows circular ecDNA plays a scary role in cancer tumors. Photo: Pixabay

The researchers relied on several different advanced tools to conduct their study, including ultrastructural electron microscopy, long-range optical mapping and computational analysis of whole-genome sequencing. These technologies allowed them to determine how the shape of ecDNA affects function on an epigenetic level.

They discovered that circular ecDNA in cancer allows for more accessibility than normal DNA, meaning, similar to the structure of bacteria, genetic information can be rapidly transcribed and expressed. When it comes to cancer, this is a frightening feature because tumor cells can grow dangerously quickly and respond faster to their changing environment and potential threats.

"By showing that ecDNA is circular, then elucidating its epigenetic organization, we demonstrate something very powerful," said Mischel. "This unique shape in human cancer cells is quite unlike normal human DNA. It really shines a new light onto the 3D organization of the screwed-up cancer genome and epigenome, which now provides a mechanistic basis for understanding why certain tumor cells are so aggressive."

The biggest take-away from this research is that cancer cells are inherently distinct in their propagation in comparison to eukaryotic cells. As Science Daily details, “Rather than passing DNA to subsequent generations by dividing into genetically identical daughter cells -- a process called mitosis, involving paired chromosomes that divide and used by all eukaryotes -- bacteria and cancer propagate by parceling out ecDNA to daughter cells in a seemingly random way, providing a mechanism by which certain daughter cells could receive multiple cancerous copies within one cell division. It is a distinctly different process of inheritance which allows for more rapid evolution and genetic change.”

Sources: Nature, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
DEC 25, 2019
Drug Discovery & Development
DEC 25, 2019
New Drug to Make Breast Cancer Treatment More Affordable
The US Food and Drug Administration has granted accelerated approval to new breast cancer drug, trastuzumab deruxtecan. The drug’s increasing recogni...
JAN 23, 2020
Cancer
JAN 23, 2020
The role of circular RNA in melanoma
New research published in the journal Cancer Cell investigates the role of circular RNAs in the spread of melanoma. Melanoma is a particularly aggressive c...
JAN 21, 2020
Drug Discovery & Development
JAN 21, 2020
Drug Targets Gastrointestinal Cancer
The FDA has recently approved Ayvakit (avapritinib) for the treatment of unresectable and metastatic gastrointestinal stromal tumor (GIST) that occurs most...
FEB 14, 2020
Immunology
FEB 14, 2020
Rewired natural killer cells show promising results in leukemia patients
Natural killer (NK) cells are a subset of white blood cells that are key players in the innate immune system, orchestrating host-rejection responses agains...
MAR 21, 2020
Cancer
MAR 21, 2020
Identifying aggressive prostate cancer subtypes
New research published yesterday in the British Journal of Cancer from scientists at the University of East Anglia describes what makes certain prostate ca...
MAR 23, 2020
Cancer
MAR 23, 2020
An Alternative Use for Common Kidney Cancer Drug to Fight Against Epithelial Ovarian Cancer
Axitinib is a small molecule drug that inhibits VEGFR tyrosine kinases 1, 2, and 3. Shown previously to potentially prevent angiogenesis and promote apoptosis in cancer cells...
Loading Comments...