SEP 02, 2020 12:26 PM PDT

New contrast dyes detect cancer using tatoo ink

Researchers have developed new cancer detection agents in the form of contrast dyes from tattoo ink. The results of these findings are published in the journal Biomaterials Science by a team from USC Viterbi Department of Biomedical Engineering and USC Michelson Center for Convergent Bioscience.

Contrast imaging is a crucial method for detecting cancers. If you’ve ever had an MRI or CT, you may have had a contrast dye injection in order to enhance the precision and sensitivity of the imaging. For cancer, this technique allows doctors not only to diagnose diseases but also provides key images for surgical treatment so that surgeons can remove tumors on the most accurate margins.

"For instance, if the problem is colon cancer, this is detected via endoscopy," explains Cristina Zavaleta, who led the team developing the new contrast agents. "But an endoscope is literally just a flashlight on the end of a stick, so it will only give information about the structure of the colon ­- you can see a polyp and know you need to take a biopsy. But if we could provide imaging tools to help doctors see whether that particular polyp is cancerous or just benign, maybe they don't even need to take it," she said.

The dyes that Zavaleta’s team has developed come from places so common you might not think to look there: food coloring dyes and tattoo ink. The optical inks, as they are called, are unique because the nanoparticles they’re attached to, which move through the bloodstream to illuminate cancerous tumors, are biodegradable, meaning they’re safe for the human body.

Photo: Pixabay

"We thought, let's look at some of the FDA-approved drug, cosmetic and food dyes that exist and see what optical properties are amongst those dyes," Zavaleta said. "And so that's where we ended up finding that many of these FDA-approved dyes have interesting optical properties that we could exploit for imaging."

The key property that the team needed to exploit was the size of the nanoparticles: the dyes need to have nanoparticles small enough to passively penetrate into tumors but not small enough to slip out too quickly before the imaging can be taken.

"With small molecules, you may be able to see them accumulate in tumor areas initially, but you'd have to be quick before they end up leaving the tumor area to be excreted," Zavaleta added. "Our nanoparticles happen to be small enough to seep through, but at the same time big enough to be retained in the tumor, and that's what we call the enhanced permeability and retention effect."

Sources: Biomaterials Science, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
JUN 07, 2021
Health & Medicine
Higher Incidence of Breast Cancer in Polluted Urban Areas
JUN 07, 2021
Higher Incidence of Breast Cancer in Polluted Urban Areas
A Taiwanese study looked at the incidence of breast cancer in areas of Taiwan with varying levels of air pollutants. Air ...
JUN 07, 2021
Cell & Molecular Biology
Overcoming Challenges to Detect Apoptosis in 3D Cell Structures
JUN 07, 2021
Overcoming Challenges to Detect Apoptosis in 3D Cell Structures
Researchers are increasingly relying on cells grown in three-dimensional (3D) structures to help answer their research q ...
SEP 16, 2021
Cancer
Inspiring Hope during Childhood Cancer Awareness Month
SEP 16, 2021
Inspiring Hope during Childhood Cancer Awareness Month
Childhood cancers, also known as pediatric cancers, are diagnosed in patients up to 14 years old.  Estimates for 20 ...
OCT 11, 2021
Cancer
Different Cancer Types Metastasize to Specific Regions of the Brain
OCT 11, 2021
Different Cancer Types Metastasize to Specific Regions of the Brain
Metastatic cancer occurs when cancer spreads from its original site of origin to a distant location in the body. Wh ...
OCT 10, 2021
Cell & Molecular Biology
DNA Can Reveal Treatments for Lung Cancer in 'Never-Smoked' Patients
OCT 10, 2021
DNA Can Reveal Treatments for Lung Cancer in 'Never-Smoked' Patients
There is a well-known causal connection between smoking and lung cancer, and most research on lung cancer has been focus ...
OCT 24, 2021
Microbiology
New Treatment Approach Uses Bacteria to Deliver Drugs to Cancer Cells
OCT 24, 2021
New Treatment Approach Uses Bacteria to Deliver Drugs to Cancer Cells
Bacteria can be found almost everywhere, and they can serve many beneficial purposes. Scientists are now using bacterial ...
Loading Comments...