JUN 27, 2016 3:09 PM PDT

TSRI Scientists Find New Cancer Drug Target in Dual-Function Protein

Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.

The new findings, published June 27, 2016 in the journal Nature Structural & Molecular Biology, suggest that future therapies might target this protein, called GlyRS, to halt cancer growth.

“We have potentially found an important target for anti-cancer treatment,” said TSRI Professor Xiang-Lei Yang, who led the study.
The Scripps Research Institute Professor Xiang-Lei Yang (left) and Research Associate Zhongying Mo were key authors of the new study. (TSRI)
Catching a Double Agent

Since the early days of life on Earth, GlyRS has played a role in protein synthesis, helping cells function and grow.

The new study, a collaboration with Professor Patrick Griffin’s lab on the Florida campus of TSRI, reveals that GlyRS is actually a double agent—in addition to its biologically essential role in making proteins, it can help to further modify proteins in a way that launches cancer growth.

The researchers found that overexpression of GlyRS may lead to too little p27—a protein than Yang compared to a stop sign for cell growth.

Specifically, the team found that GlyRS creates a protective shield around a modifier protein, called NEDD8, and safely “chaperones” it to meet its target protein, called cullin. With NEDD8 in place, cullin is activated to degrade p27.

Kept at the right levels, p27 regulates the cell cycle, stopping potential cancer growth. But when GlyRS levels increase, too much p27 gets degraded and cells multiply unchecked. 

“Cancer cells hijack and over-exaggerate the system,” said TSRI Research Associate Zhongying Mo, first author of the study. “This can lead to tumorigenesis.”

This process is especially dangerous given GlyRS’s additional function in protein synthesis, which supplies cancers with the proteins they need to keep growing. “Ultimately, both functions are linked to cell proliferation and tumorigenesis,” Yang said.

Indeed, when Mo analyzed data from a breast cancer tissue database, she found that patients with increased GlyRS had higher mortality.

Although this research is at the basic stage, the team believes it could guide future cancer diagnostics and therapies. For example, measuring GlyRS may provide a marker to help doctors predict how quickly a patient’s cancer might progress.

The team now plans to study the effects of GlyRS in different types of cancer and the possibility of developing a drug to inhibit GlyRS.

In addition to Yang, Griffin and Mo, authors of the study “Neddylation requires glycyl-tRNA synthetase to protect activated E2,” were Qian Zhang, Ze Liu, Yi Shi and Litao Sun of TSRI’s California campus and Janelle Lauer of TSRI’s Florida campus.

This research was supported by the National Institutes of Health (grant R01GM088278).
_________
FOR MORE INFORMATION
Xiang-Lei Yang Biosketch
Yang Lab Website
Nature Structural & Molecular Biology
About the Author
  • The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists-including two Nobel laureates-work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
You May Also Like
NOV 25, 2019
Cell & Molecular Biology
NOV 25, 2019
Linking Intestinal Stem Cells with Increased Cancer Risk From a High-Fat Diet
The work, which used a mouse model, links stem cell activity with cellular fat consumption in a new way....
JAN 02, 2020
Cancer
JAN 02, 2020
Early onset stomach cancer in young people
New research from Mayo Clinic published recently in the journal Surgery details a distinction in the types of stomach cancer that affects particularly youn...
JAN 02, 2020
Cancer
JAN 02, 2020
The new "tumor-on-a-chip"
In order to mimic the microenvironment of a tumor in the human body, researchers from Kyoto University have developed a device that they are describing as ...
JAN 05, 2020
Cancer
JAN 05, 2020
What does obesity have to do with skin cancer?
You might not think that obesity has anything at all to do with skin cancer. Yes, obesity has been linked as a clear risk factor to other cancers, but&hell...
FEB 02, 2020
Cell & Molecular Biology
FEB 02, 2020
New T Cell Therapy is a Universal Approach to Target Cancer
For years, researchers have been trying to harness the power of the assassins of the immune system - killer T cells....
FEB 12, 2020
Cancer
FEB 12, 2020
Can we eradicate cervical cancer within a century?
Two studies recently published in The Lancet present evidence that the eradication of cervical cancer could be possible within the next century. The World ...
Loading Comments...