AUG 04, 2016 12:35 PM PDT

Physicists Heat Gold Nanoparticles to Shrink Tumors

WRITTEN BY: Xuan Pham
Olympians in Rio aren’t the only ones coveting gold – scientists at Niels Bohr Institute are using physics and gold nanoparticles to make cancer treatments not only more precise, but also more gentle on the body.

Combining gold nanoparticles and infrared laser may provide gentler radiation treatments for cancer
Scientists have devised numerous ways to kill cancer. However, the long-standing caveat is that most effective methods of killing cancer cells also end up harming the patients in some way. Thus, in some cases, cancer treatments become a delicate balancing act for both doctors and patients.

One common method to kill cancer is through radiation, a process that zaps cancer cells with high-energy waves like X-rays or gamma rays. This damages the cancer’s DNA so that the cells die and the tumor shrinks. However, radiation is indeed harmful and can damage healthy cells in addition to cancer cells. Furthermore, some type of radiation therapy can cause burn damage and irritation to the tissues exposed to the high-energy waves.

Now, using a combination of nanoparticles coated in gold and near-infrared laser lights, scientists at the Niels Bohr Institute say they can mitigate (or least reduce) the collateral damage to healthy cells, which, in turn, reduces the harsh side-effects that often accompany radiation therapy.

"The treatment involves injecting tiny nanoparticles directly into the cancer. Then you heat up the nanoparticles from outside using lasers. It is a strong interaction between the nanoparticles and the laser light, which causes the particles to heat up. What then happens is that the heated particles damage or kill the cancer cells," said Professor Lene Oddershede, a biophysicist at the Niels Bohr Institute at the University of Copenhage.

The nanoparticles are miniscule – ranging between 80 to 150 nanometers in diameter. For reference, the diameter for a strand of hair is around 75,000 nanometers!
 

The team experimented with some nanoparticles that were solid gold versus some that had a glass core coated with a gold shell. "As physicists we have great expertise in the interaction between light and nanoparticles and we can very accurately measure the temperature of the heated nanoparticles. The effectiveness depends on the right combination between the structure and material of the particles, their physical size and the wavelength of the light," said Lene Oddershede.

It turned out that the particles that best reduced tumor growth were ones that had a glass core and gold shell. Experiments were done both in cell culture and in mice with cultured human cancer cells. According to the team, just 1 hour after treatment, PET scans showed a marked reduction in tumor growth that was sustained for at least 48 hours with a single dose. They note that the near-infrared laser lights did not induce any burns as may be typical for conventional radiation therapy.

"Now we have proven that the method works. In the longer term, we would like the method to work by injecting the nanoparticles into the bloodstream, where they end up in the tumors that may have metastasized. With the PET scans we can see where the tumors are and irridate them with lasers, while also effectively assessing how well the treatment has worked shortly after the irradiation. In addition, we will coat the particles with chemotherapy, which is released by the heat and which will also help kill the cancer cells," said Lene Oddershede.
 

Additional source: Niels Bohr Institute press release
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
JUN 21, 2018
Immunology
JUN 21, 2018
The Silver Tsunami: An Aging Immune System and Cancer
Why do cases of cancer become more common as we get older? Scientists interested in explaining the so-called “Silver Tsunami” phenomenon look t...
JUL 03, 2018
Cancer
JUL 03, 2018
Hereditary Myeloid Neoplasm Predisposition
New changes in myeloid classification help to outline a new category of AML which develops as a result of hereditary mutations predisposing family members to myeloid neoplasms in adulthood....
JUL 10, 2018
Cancer
JUL 10, 2018
New Potential Inhibitor Target for Mantle Cell Lymphoma
A new small molecule inhibitor, called PTC596, initiated apoptosis in MCL cells according to a study published this month in Oncotarget....
AUG 10, 2018
Immunology
AUG 10, 2018
Cancer Cell 'Drones' Battle Immune System
Cancer cells release PD-L1 containing exosomes that circulate in the blood and stop T cells before they can reach tumors....
AUG 26, 2018
Cancer
AUG 26, 2018
Can antireflux surgery prevent Esophageal cancer?
Heartburn or gastroesophageal reflux disease (GERD) is a widespread health problem affecting 10 to 20% of adults in Western populations. If GERD left untre...
OCT 17, 2018
Cell & Molecular Biology
OCT 17, 2018
Saving Patients From Unnecessary Chemotherapy with a Blood Test
Often, cancer patients get chemotherapy after surgery to ensure that their cancer will not come back; for many it's not needed....
Loading Comments...