MAR 10, 2015 10:58 AM PDT

DNA Safeguard May Be Key in Cancer Treatment

WRITTEN BY: Ilene Schneider
Krishna Ramanujan, Cornell University

Cornell researchers have developed a new technique to understand the actions of key proteins required for cancer cells to proliferate.

The technique will help guide the development of drugs currently in clinical trials for anti-cancer treatments that inhibit this class of proteins, called kinases.

The study, published March 5 in the journal Molecular Cell, focuses on a few kinases - mainly ATR and ATM - that are involved in detecting and triggering responses to DNA damage in all human cells. Since our DNA may be replicated as many as 20 trillion times from fertilized egg through adulthood, there are many occasions for error and the need for repair.

"The ATR protein is well-known to detect damage in our DNA and coordinate a response that ensures the efficient repair of the damage before the cell divides into two distinct cells," said Marcus Smolka, associate professor of molecular biology and genetics in the Weill Institute for Cell and Molecular Biology, and senior author of the paper. Francisco Meirelles Bastos de Oliveira, a former postdoctoral researcher, is the paper's first author, along with graduate student Dongsung Kim, both in Smolka's lab.

Damage that occurs during replication may be compared to a water pipe breaking in a municipality, said Smolka. "You need a system to detect when a water pipe breaks, and you need a group that makes and coordinates decisions to turn off the water, to notify people in the neighborhood, and to call a repair group," Smolka said. In this analogy, ATR and ATM function as the group that detects and signals other entities for an appropriate response.

In cancer cells, which reproduce very quickly, there is a great deal of DNA damage, as if "hundreds of water pipes are broken" at once, Smolka said. "Cancer cells highly depend on ATR to survive," he added.

Thus therapies that inhibit ATR may be effective in killing cancer cells, and, in fact, the first ATR inhibitors are entering early clinical trials.

The ATR kinase, which was discovered in the 1990s, was thought to be recruited only in the event of DNA damage, but Smolka and colleagues have discovered that ATR also acts pre-emptively to prevent DNA lesions that lead to cell disorders and cell death.

The work opens new opportunities to inhibit ATR and uncovers novel pathways controlled by this kinase.

The new technique uses mass spectrometry to measure the mass of molecules with extremely high accuracy. Kinases signal actions by transferring phosphate groups to proteins. The transfer of a phosphate group regulates protein functions by activating and deactivating, changing location or degrading a protein, for example. The new technique uses exact mass measurements to detect these proteins (or substrates) and the transfer of phosphate groups.

The researchers also found evidence of proteins that turn ATR on to transfer phosphate groups to other proteins.

Though more than 500 kinases are known to exist, fewer than 100 are well-understood. The new technique offers a path for understanding the actions of all kinases in a highly quantitative way. Many kinases are involved centrally, not just in cancers, but also in diabetes and neurological disorders.

The study used yeast cells, which contain kinases that are homologous to ATR and ATM.

Source: Cornell University
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
OCT 05, 2020
Cancer
Does Having an Appendectomy Increase Your Risk for Cancer?
OCT 05, 2020
Does Having an Appendectomy Increase Your Risk for Cancer?
Cancer research is more than just the study of diagnostics and novel therapies. Researchers also investigate the causes ...
OCT 05, 2020
Health & Medicine
Cannabis Chemotherapy Trial Shows Encouraging Phase II Results
OCT 05, 2020
Cannabis Chemotherapy Trial Shows Encouraging Phase II Results
Even with the best anti-nausea medications one in three patients receiving chemotherapy experiences vomiting, and about ...
OCT 06, 2020
Drug Discovery & Development
New Immunotherapy Drug Effective Against Lung Cancer
OCT 06, 2020
New Immunotherapy Drug Effective Against Lung Cancer
A new study has confirmed that Tecentriq, an immunotherapy drug, improves survival rates among those with newly diagnose ...
OCT 25, 2020
Cell & Molecular Biology
Revealing More About the Genetics of Ewing Sarcoma
OCT 25, 2020
Revealing More About the Genetics of Ewing Sarcoma
Ewing sarcoma is a rare kind of cancer that tends to impact young people and occurs in bones or the tissue around them. ...
OCT 26, 2020
Cancer
Attacking leukemia trojan horse style
OCT 26, 2020
Attacking leukemia trojan horse style
Researchers from the Max Planck Institute of Biochemistry have developed a new approach to targeting leukemic stem cells ...
NOV 09, 2020
Genetics & Genomics
Potential Problems with Liquid Biopsies
NOV 09, 2020
Potential Problems with Liquid Biopsies
Liquid biopsies are tests that look for biomarkers in the blood, which can help inform the treatment of cancer. The tool ...
Loading Comments...