FEB 24, 2017 02:10 PM PST

Cancer Twists a Neuronal Mechanism for its Selfish Survival

WRITTEN BY: Xuan Pham

Scientists at the University of Texas Southwestern Medical Center recently report cancer’s corruption of a protein that was once thought to be exclusive to neurons. Cancer cells seem to have altered a neuronal signaling mechanism to foster its own growth and even evade cell death. The discovery underscores cancer’s cunning but twisted adaptation for survival.

"Cancer is a disease of cell biology. To grow, spread, and survive, cancer cells modify normal cellular behavior to their advantage. They can't reinvent the underlying mechanisms, but can adapt them,” explained Dr. Sandra Schmid, professor at UT Southwestern and the senior author of the two joint publications.

"Many properties of aggressive cancer growth are driven by altered cell signaling," said Dr. Schmid. "We found that cancer cells are taking a page from the neuron's signaling playbook to maintain certain beneficial signals and to squelch signals that would harm the cancer cells."

In this case, the twisted adaptation involves a protein known as dynamin1 (Dyn1). Researchers knew that Dyn1 facilitates the transmission of electrical signals between neurons. Specifically, the presence of Dyn1 causes rapid endocytosis of signaling molecules into the cell.

But, unbeknownst to researchers, cancer cells have adapted this mechanism for their own survival. “Aggressive cancer cells have usurped the mechanisms that neurons use for the rapid uptake and recycling of neural transmitters. Instead of neural transmitters, the cancer cells use Dyn1 for rapid uptake and recycling of EGF (epidermal growth factor) receptors. Mutations in EGF receptors are drivers of breast and lung cancers," said Dr. Schmid.

By hijacking Dyn1’s role and using it for EGF receptors, cancer cells thrive faster and better than the nearby healthy cells. Essentially, cancer cells corrupt Dyn1 in order to cheat their survival. “We find that some cancer cells repurpose tools that neurons use in order to get a competitive advantage over nearby normal cells," she said.

This mechanism also allows cancer cells to thwart a form of cell death associated with death receptors. "It is amazing that the aggressive cancers use a signaling pathway to increase the activity of EGF and also turn on Dyn1 pathways to suppress cancer death -- so you have this vicious circle," said Dr. Schmid.

The newly identified mechanism may explain why aggressive cancers, like breast and lung cancer, don’t respond to conventional treatments targeted at EGF signaling. Schmid’s team is currently on the hunt for an inhibitor of Dyn1.

Additional sources: University of Texas Southwestern Medical Center

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
OCT 19, 2019
Cancer
OCT 19, 2019
New hope for children's brain cancer DIPG
New research published in Nature Communications provides insight on a potential treatment for an aggressive form of brain cancer called Diffuse Intrinsic P...
OCT 19, 2019
Cancer
OCT 19, 2019
The role of sleeper cells in metastasis
New research published in the journal Nature Communications aims to explain why some breast cancers recur following cancer treatment. According to col...
OCT 19, 2019
Drug Discovery & Development
OCT 19, 2019
Leukemia Drug Effective for Treating Childhood Brain Cancer
Scientists at the University of California-San Diego have found that a chronic myeloid leukemia drug was found to treat medulloblastoma in mouse models mor...
OCT 19, 2019
Drug Discovery & Development
OCT 19, 2019
Compound in Daffodils Can Help Fight Cancer
Preventing the growth of tumors presents a challenge for scientists in finding a cure to cancer. Now however, researchers from the University Libre de Brux...
OCT 19, 2019
Cancer
OCT 19, 2019
Using temperature to awaken immune response to fight brain cancer
Glioblastoma is the most common form of adult brain cancer and also one of the most aggressive human cancers. Immunotherapy has yet to be shown proven effe...
OCT 19, 2019
Cancer
OCT 19, 2019
New diagnostic tool for thyroid cancer
Thyroid cancer diagnoses have risen in the last thirty years from 6 per 100,000 to more than 14 per 100,000. That’s according to the Surveillance, Ep...
Loading Comments...