FEB 24, 2017 2:10 PM PST

Cancer Twists a Neuronal Mechanism for its Selfish Survival

WRITTEN BY: Xuan Pham

Scientists at the University of Texas Southwestern Medical Center recently report cancer’s corruption of a protein that was once thought to be exclusive to neurons. Cancer cells seem to have altered a neuronal signaling mechanism to foster its own growth and even evade cell death. The discovery underscores cancer’s cunning but twisted adaptation for survival.

"Cancer is a disease of cell biology. To grow, spread, and survive, cancer cells modify normal cellular behavior to their advantage. They can't reinvent the underlying mechanisms, but can adapt them,” explained Dr. Sandra Schmid, professor at UT Southwestern and the senior author of the two joint publications.

"Many properties of aggressive cancer growth are driven by altered cell signaling," said Dr. Schmid. "We found that cancer cells are taking a page from the neuron's signaling playbook to maintain certain beneficial signals and to squelch signals that would harm the cancer cells."

In this case, the twisted adaptation involves a protein known as dynamin1 (Dyn1). Researchers knew that Dyn1 facilitates the transmission of electrical signals between neurons. Specifically, the presence of Dyn1 causes rapid endocytosis of signaling molecules into the cell.

But, unbeknownst to researchers, cancer cells have adapted this mechanism for their own survival. “Aggressive cancer cells have usurped the mechanisms that neurons use for the rapid uptake and recycling of neural transmitters. Instead of neural transmitters, the cancer cells use Dyn1 for rapid uptake and recycling of EGF (epidermal growth factor) receptors. Mutations in EGF receptors are drivers of breast and lung cancers," said Dr. Schmid.

By hijacking Dyn1’s role and using it for EGF receptors, cancer cells thrive faster and better than the nearby healthy cells. Essentially, cancer cells corrupt Dyn1 in order to cheat their survival. “We find that some cancer cells repurpose tools that neurons use in order to get a competitive advantage over nearby normal cells," she said.

This mechanism also allows cancer cells to thwart a form of cell death associated with death receptors. "It is amazing that the aggressive cancers use a signaling pathway to increase the activity of EGF and also turn on Dyn1 pathways to suppress cancer death -- so you have this vicious circle," said Dr. Schmid.

The newly identified mechanism may explain why aggressive cancers, like breast and lung cancer, don’t respond to conventional treatments targeted at EGF signaling. Schmid’s team is currently on the hunt for an inhibitor of Dyn1.

Additional sources: University of Texas Southwestern Medical Center

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
JAN 02, 2020
Genetics & Genomics
JAN 02, 2020
Mysterious Extrachromosomal DNA is Linked to Childhood Cancer
Scientists are learning more about an unusual kind of DNA that's separate from a cell's genomic DNA....
JAN 07, 2020
Immunology
JAN 07, 2020
"Good" T Cells Can Go "Bad," But in the Case of Cancer, That's A Good Thing
T cells may be able to reach their full potential in the fight against cancer with a little nudge. In 2010, scientists first observed CD4+ T cells transiti...
JAN 15, 2020
Cell & Molecular Biology
JAN 15, 2020
Cell Division Research Reveals More About a Protein That's Elevated in Cancer
Cell division is a carefully regulated process, cancer is the result when it gets out of control....
JAN 16, 2020
Cancer
JAN 16, 2020
FLASH proton therapy: faster and more effective
A new technique called FLASH proposes a new type of radiation therapy. The technique is composed of an ultra-high dose rate of radiotherapy and uses electr...
JAN 20, 2020
Cancer
JAN 20, 2020
Did you know these non-cancer drugs can also fight cancer?
A study from MIT. Harvard and the Dana-Farber Cancer Institute has concluded that almost 50 existing non-oncological drugs have anti-cancer properties capa...
FEB 24, 2020
Health & Medicine
FEB 24, 2020
Breast Cancer Screening, without the Radiation
Researchers from the University of Waterloo have developed a prototype of a novel technology that is capable of screening for breast cancer without using r...
Loading Comments...