MAY 05, 2017 05:18 AM PDT

How a Cancer-Causing Virus Hides in Plain Sight

WRITTEN BY: Xuan Pham

It’s estimated that nine out of ten people are infected with the Epstein-Barr virus (EBV). The virus stays dormant for most of the time, but in some cases, it rears its ugly self to cause lymphoma in immunocompromised people. How does the virus manage to conceal itself so well within our bodies only to strike when we’re most vulnerable? Scientists think it’s the virus’ ability to masquerade within our immune cells.

Image credit: wikipedia.org

Since its discovery in the 1960s, the Epstein-Barr virus has proven to be increasingly more complex. Also called human herpesvirus 4 (HHV-4), EBV is one of eight viruses in the herpes family. It’s infamous for causing “the kissing disease,” otherwise known as mono (short for mononucleosis), in teenagers.

But even more threatening than causing swollen lymph glands and fevers, EBV was the first virus shown to cause cancer directly. In particular, EBV infection is linked to two types of lymphomas (Burkitt’s and Hodgkin’s), stomach cancer, and some types of head and neck cancer (nasopharyngeal carcinoma).

EBV typically persists in a type of immune cells called B cells - these are white blood cells that respond to infection. And from within, the virus manages to boost B cell division while simultaneously stalling cell death.

"The virus actually taps into the B cell's normal protection against apoptosis," said Micah Luftig, an associate professor of molecular genetics and microbiology at Duke University, and the study's senior investigator.

By this mechanism, EBV manages to immortalize the B cells, and thereby furthering its own survival. Specifically, as the infection progresses, EBV will blend in with memory B cells, a B-cell subtype that circulate throughout the body, ready to respond to attacks by known pathogens.

"All of this is about establishing latency," Luftig said. This is how EBV hides in plain sight. The team used a technique called BH3 profiling to “query mitochondrial regulation of apoptosis,” which allowed them to glimpse the mechanism behind B-cell immortalization by the virus. Key to the story is a protein called EBNA3A (Epstein-Barr Nuclear Antigen 3A), which plays an crucial role in the B cell’s abilities to resist apoptosis.

Ultimately, Luftig hopes this line of research could lead to new treatment options and benefit immunocompromised people who are at much higher risk of developing cancer from the Epstein-Barr virus.

Additional source: Duke University via EurekAlert!

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
NOV 14, 2018
Cancer
NOV 14, 2018
How Cancer's 'Invisibility Cloak' Works
One of cancer’s cunning strategies to evade death is to make itself invisible to the immune system. Now researchers say they’ve identified the...
AUG 07, 2018
Cancer
AUG 07, 2018
Renal Cell Carcinoma and Myelodysplastic Syndrome Show Epigenetic Association
DNA methylation patterns in renal cell carcinoma (RCC) have a strong association with myelodysplastic syndrome DNA hypermethylation later in life....
AUG 21, 2018
Cancer
AUG 21, 2018
Theranostics.....Heard of it?
Theranostics is an emerging field that combines therapeutics and diagnostic capabilities into one opportunity for treatment of diseases, especially cancer....
SEP 02, 2018
Cell & Molecular Biology
SEP 02, 2018
Cancer Cell Lines can Evolve in the Lab
New research shows that scientists have to take steps to verify the identity of the cell lines they grow....
OCT 30, 2018
Drug Discovery
OCT 30, 2018
Re-sensitizing Drug-resistant Human Tumor Cells
Understanding how cancer cells avoid death despite their DNA being damaged will create new strategies to enhance cancer cell killing through chemotherapy t...
OCT 31, 2018
Cancer
OCT 31, 2018
Researchers identify a protein marker that induces dormancy in metastatic breast cancer
Researchers at the Mount Sinai hospital identified for the first time a protein marker that could indicate whether breast cancer will further metastasize or remains in a dormant state accordi...
Loading Comments...