MAY 05, 2017 5:18 AM PDT

How a Cancer-Causing Virus Hides in Plain Sight

WRITTEN BY: Xuan Pham

It’s estimated that nine out of ten people are infected with the Epstein-Barr virus (EBV). The virus stays dormant for most of the time, but in some cases, it rears its ugly self to cause lymphoma in immunocompromised people. How does the virus manage to conceal itself so well within our bodies only to strike when we’re most vulnerable? Scientists think it’s the virus’ ability to masquerade within our immune cells.

Image credit: wikipedia.org

Since its discovery in the 1960s, the Epstein-Barr virus has proven to be increasingly more complex. Also called human herpesvirus 4 (HHV-4), EBV is one of eight viruses in the herpes family. It’s infamous for causing “the kissing disease,” otherwise known as mono (short for mononucleosis), in teenagers.

But even more threatening than causing swollen lymph glands and fevers, EBV was the first virus shown to cause cancer directly. In particular, EBV infection is linked to two types of lymphomas (Burkitt’s and Hodgkin’s), stomach cancer, and some types of head and neck cancer (nasopharyngeal carcinoma).

EBV typically persists in a type of immune cells called B cells - these are white blood cells that respond to infection. And from within, the virus manages to boost B cell division while simultaneously stalling cell death.

"The virus actually taps into the B cell's normal protection against apoptosis," said Micah Luftig, an associate professor of molecular genetics and microbiology at Duke University, and the study's senior investigator.

By this mechanism, EBV manages to immortalize the B cells, and thereby furthering its own survival. Specifically, as the infection progresses, EBV will blend in with memory B cells, a B-cell subtype that circulate throughout the body, ready to respond to attacks by known pathogens.

"All of this is about establishing latency," Luftig said. This is how EBV hides in plain sight. The team used a technique called BH3 profiling to “query mitochondrial regulation of apoptosis,” which allowed them to glimpse the mechanism behind B-cell immortalization by the virus. Key to the story is a protein called EBNA3A (Epstein-Barr Nuclear Antigen 3A), which plays an crucial role in the B cell’s abilities to resist apoptosis.

Ultimately, Luftig hopes this line of research could lead to new treatment options and benefit immunocompromised people who are at much higher risk of developing cancer from the Epstein-Barr virus.

Additional source: Duke University via EurekAlert!

About the Author
I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
AUG 12, 2022
Immunology
Study Suggests that Terminally Exhausted T cells can be Rejuvenated
AUG 12, 2022
Study Suggests that Terminally Exhausted T cells can be Rejuvenated
Our immune cells can target cancer, but T cells can become worn out and exhausted  during lengthy battles, and they ...
SEP 04, 2022
Drug Discovery & Development
Brief Exposure to Cancer Drug Produces Anti-aging Effects in Mice
SEP 04, 2022
Brief Exposure to Cancer Drug Produces Anti-aging Effects in Mice
Brief exposure to rapamycin, a promising anti-aging drug, may have similar effects on health and lifespan as longer trea ...
NOV 09, 2022
Cardiology
Less Than 5 Hours of Sleep Per Night Linked to Multiple Diseases
NOV 09, 2022
Less Than 5 Hours of Sleep Per Night Linked to Multiple Diseases
Getting enough sleep is an important part of lowering chronic disease risk.
NOV 10, 2022
Plants & Animals
Treating Cancer in Dogs Using "Click" Chemistry
NOV 10, 2022
Treating Cancer in Dogs Using "Click" Chemistry
Researchers from California and Denmark were recently awarded the Nobel Prize in chemistry for the development of what&r ...
NOV 23, 2022
Cannabis Sciences
Why researchers have hope that cannabis may help fight ovarian cancer
NOV 23, 2022
Why researchers have hope that cannabis may help fight ovarian cancer
There's a positive, growing link between cannabis and the fight against ovarian cancer. Here's why researchers are optim ...
NOV 29, 2022
Cell & Molecular Biology
How a Master Regulator May be Working to Protect Cancer
NOV 29, 2022
How a Master Regulator May be Working to Protect Cancer
Scientists have now discovered yet another way that MYC proteins can promote cancer. MYC has been called a master regula ...
Loading Comments...