JUN 28, 2017 10:19 AM PDT

Glucose Could Replace Toxic Metal Agent in MRI Scans

WRITTEN BY: Xuan Pham

Brain imaging via MRIs may soon be enhanced with simple sugar instead of conventional metal complexes. A new study found that glucose, a simple and common form of sugar, is a safer and more accurate alternative for tumor imaging.

Image credit: Pixabay.com

Magnetic resonance imaging (MRI) is a technique that uses magnetic field and radio waves to build a picture of organs and structures inside the body. Although MRIs can be performed alone, clinicians often rely on use of agents that enhance the contrast of the image to better detect the details. An agent commonly used for this purpose is gadolinium, which is a naturally occurring metal. Gadolinium MRI contrast agents are useful, but it has known toxicities, including side effects in kidney patients. Furthermore, gadolinium can build-up in the body as deposits in the brain, especially for patients who require repeat MRIs.

To overcome this challenge, a German research team sought to exploit a tumor’s biology. Mainly, they took advantage of the fact that most tumors consume more sugar than normal tissues. Thus, they turned to glucose as an MRI contrast agent.

Since glucose is naturally present in the body, the team had to devise a way to make the glucose agent inside tumors more prominent. For this, they turned to an ultrahigh field scanner with 7 Tesla magnetic field strength, which is powerful enough to visualize the signals in a tumor.

"Our glucose MRI does not require any radioactivity and therefore does not involve any radiation exposure for the patient," said Dr. Daniel Paech, a physician and physicist at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), and the study’s lead author.

Using glucose could big safety and efficacy potential. According to a few recent studies, gadolinium from traditional MRIs can deposit in bone and the brain, suggesting that residuals could cause long-term harm. And from an efficacy perspective, glucose may yield better tumor visualization because it is taken up by the tumor cells more readily, and it can also penetrate the blood-brain barrier more efficiently than gadolinium due to its smaller size. This means that glucose-enhanced MRIs should detect close to 100 percent of high-grade tumors, in contrast to the 70 to 80 percent detected by gadolinium MRIs.

Still, they have some unanswered questions regarding the new technology. "We do not know yet how the shares of measured glucose are distributed between vessels and extracellular spaces on the one hand and the cell interior on the other," said radiologist Heinz-Peter Schlemmer, a study co-author. "If we can confirm that substantial signal levels originate from glucose in the cell interior, this would be important additional information for tumor imaging and functional MRI. This could enhance therapy planning and monitoring."

Additional source: German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) via Science Daily

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
MAR 15, 2021
Cell & Molecular Biology
Newly-ID'ed Organelle May Play a Role in Cancer Metastasis
MAR 15, 2021
Newly-ID'ed Organelle May Play a Role in Cancer Metastasis
Cells are packed full of organelles and molecules like proteins floating in a liquid known as cytoplasm. In recent years ...
MAR 22, 2021
Immunology
Gene Mutation Keeps Tumors "Cold"
MAR 22, 2021
Gene Mutation Keeps Tumors "Cold"
Immunologists have identified a mechanism through which an oncogene mutation shields pancreatic tumors from immune cells ...
APR 25, 2021
Genetics & Genomics
How Did the Chernobyl Disaster Affect Human Health?
APR 25, 2021
How Did the Chernobyl Disaster Affect Human Health?
It's been about 35 years since the disaster at the Chernobyl nuclear power plant. Now researchers have investigated whet ...
MAY 05, 2021
Immunology
Novel 3D Bio-printed Leukemia Model Shows Potential for Treatment Testing Platform
MAY 05, 2021
Novel 3D Bio-printed Leukemia Model Shows Potential for Treatment Testing Platform
Three-dimensional (3D) printing has become a common technique over the past two decades. Now, the technique has been ado ...
MAY 08, 2021
Cancer
More evidence supports the evils of sugary drinks
MAY 08, 2021
More evidence supports the evils of sugary drinks
New research published online in the journal Gut from researchers at the Washington University School of Medicine i ...
MAY 29, 2021
Cancer
New device detects skin cancer from tensile stiffness
MAY 29, 2021
New device detects skin cancer from tensile stiffness
A research team composed of scientists from City University of Hong Kong (CityU) has designed an automated non-invasive ...
Loading Comments...