JUN 28, 2017 10:19 AM PDT

Glucose Could Replace Toxic Metal Agent in MRI Scans

WRITTEN BY: Xuan Pham

Brain imaging via MRIs may soon be enhanced with simple sugar instead of conventional metal complexes. A new study found that glucose, a simple and common form of sugar, is a safer and more accurate alternative for tumor imaging.

Image credit: Pixabay.com

Magnetic resonance imaging (MRI) is a technique that uses magnetic field and radio waves to build a picture of organs and structures inside the body. Although MRIs can be performed alone, clinicians often rely on use of agents that enhance the contrast of the image to better detect the details. An agent commonly used for this purpose is gadolinium, which is a naturally occurring metal. Gadolinium MRI contrast agents are useful, but it has known toxicities, including side effects in kidney patients. Furthermore, gadolinium can build-up in the body as deposits in the brain, especially for patients who require repeat MRIs.

To overcome this challenge, a German research team sought to exploit a tumor’s biology. Mainly, they took advantage of the fact that most tumors consume more sugar than normal tissues. Thus, they turned to glucose as an MRI contrast agent.

Since glucose is naturally present in the body, the team had to devise a way to make the glucose agent inside tumors more prominent. For this, they turned to an ultrahigh field scanner with 7 Tesla magnetic field strength, which is powerful enough to visualize the signals in a tumor.

"Our glucose MRI does not require any radioactivity and therefore does not involve any radiation exposure for the patient," said Dr. Daniel Paech, a physician and physicist at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), and the study’s lead author.

Using glucose could big safety and efficacy potential. According to a few recent studies, gadolinium from traditional MRIs can deposit in bone and the brain, suggesting that residuals could cause long-term harm. And from an efficacy perspective, glucose may yield better tumor visualization because it is taken up by the tumor cells more readily, and it can also penetrate the blood-brain barrier more efficiently than gadolinium due to its smaller size. This means that glucose-enhanced MRIs should detect close to 100 percent of high-grade tumors, in contrast to the 70 to 80 percent detected by gadolinium MRIs.

Still, they have some unanswered questions regarding the new technology. "We do not know yet how the shares of measured glucose are distributed between vessels and extracellular spaces on the one hand and the cell interior on the other," said radiologist Heinz-Peter Schlemmer, a study co-author. "If we can confirm that substantial signal levels originate from glucose in the cell interior, this would be important additional information for tumor imaging and functional MRI. This could enhance therapy planning and monitoring."

Additional source: German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) via Science Daily

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
AUG 07, 2020
Plants & Animals
Do Tasmanian Devils Hold the Key to Tumor Inhibition?
AUG 07, 2020
Do Tasmanian Devils Hold the Key to Tumor Inhibition?
Thanks to a historic cartoon character, Tasmanian devils are commonly regarded as cantankerous and ferocious creatures. ...
AUG 19, 2020
Cancer
Link between microbiome and cancer treatment outcomes
AUG 19, 2020
Link between microbiome and cancer treatment outcomes
New research published in the journal European Urology reports that greater gut microbial diversity in patients wit ...
AUG 26, 2020
Cancer
NAP-6: A Potential Candidate for the Treatment of Breast Cancer
AUG 26, 2020
NAP-6: A Potential Candidate for the Treatment of Breast Cancer
The body is an amazing and complex system of pathways, all working together in harmony. However, cancer can quickly disr ...
SEP 01, 2020
Cancer
Honeybee venom destroys triple-negative breast cancer cells
SEP 01, 2020
Honeybee venom destroys triple-negative breast cancer cells
New research published in the international journal npj Precision Oncology reports that honeybee venom is capa ...
SEP 14, 2020
Genetics & Genomics
Why Defects in One Gene Can Lead to Cancer in Kids
SEP 14, 2020
Why Defects in One Gene Can Lead to Cancer in Kids
While they may occur in adults, a rare, aggressive type of brain cancer called atypical teratoid rhabdoid tumors tend to ...
SEP 22, 2020
Cardiology
Investigating the Mechanism Behind 5-Fluorouracil's Cardiotoxicity
SEP 22, 2020
Investigating the Mechanism Behind 5-Fluorouracil's Cardiotoxicity
Cancer therapies have come quite far, with several options available for many cancers. An issue that has plagued many of ...
Loading Comments...