JUL 17, 2017 3:41 PM PDT

Cancer Forces Cells to Become Virus-Like

WRITTEN BY: Xuan Pham

For a long time, scientists noticed that tumors secrete factors that suggest there were viruses present inside the tumors too. But even when they searched high and low, no viruses were found within the tumors. But a recent study has finally unveiled the mystery: cancer cells force nearby healthy cells to secrete viral-like proteins for its defense.

Image credit: Pixabay.com

"The conundrum was that in most cases, there was no viral infection in these tumors," said Andy J. Minn, an associate professor of Radiation Oncology at Penn, and the study’s senior author. "We've been studying this problem for many years, and it's a puzzle we were motivated to solve because cancers with this kind of anti-viral signaling can be particularly aggressive."

Minn and his team found that the cancer cells force surrounding fibroblasts to secrete vial-like genetic material inside small fluid-filled sacs known as exosomes. Specific to breast cancer cells, the fibroblasts were making exosomes rich in an RNA known as RN7SL1 , which resembles viral RNA at one end. With this viral-mimic exposed, the tissue responds as if there are viruses present, and this response can further enable the growth of the tumor.

"The ability of cancer cells to specifically instruct the fibroblasts to expose the viral-like end of RN7SL1 is a key discovery," said Minn. "If the end remains covered, breast cancer cells wouldn't treat these exosomes like a virus, making them less likely to progress and more likely to respond to treatment. On the other hand, if the end is always exposed, cells would react as if they are infected with a virus all the time."

The researchers think this manipulation of fibroblast cells could explain the inflammatory nature of some aggressive types of breast cancers. In particular, triple-negative and BRCA1 are two aggressive types of breast cancers that have high viral responses. Singling out the mechanism behind this response could lead to specific alternative treatments that improve the outcomes for these cancer types.

"Since we can test the blood of cancer patients to measure the presence of exposed RN7SL1 in exosomes, we can potentially identify patients whose cancers will be the most aggressive because of this virus mimic," Minn said. "Now that we understand how the exposed RNA is generated, we can look to potential therapeutic targets."

Additional source: Perelman School of Medicine at the University of Pennsylvania

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
DEC 06, 2019
Health & Medicine
DEC 06, 2019
Study finds association between hair products and breast cancer risk
For many women, hair color and style are significant components of their identity. However, troubling information from a new study about the use of hair dy...
DEC 14, 2019
Cancer
DEC 14, 2019
Common antibiotic could improve radiation therapy
Have you ever taken the antibiotic vancomycin? As a commonly prescribed antibiotic for colitis and infections caused by Clostridium difficile, vancomycin i...
DEC 18, 2019
Drug Discovery & Development
DEC 18, 2019
A tool that simplifies the hunt for cancer drugs
Cells have long been the internal hubs for proteins that hold a wide variety of unique functions. Disorders on how a cell synthesizes a protein can affect ...
JAN 20, 2020
Cancer
JAN 20, 2020
Did you know these non-cancer drugs can also fight cancer?
A study from MIT. Harvard and the Dana-Farber Cancer Institute has concluded that almost 50 existing non-oncological drugs have anti-cancer properties capa...
JAN 21, 2020
Drug Discovery & Development
JAN 21, 2020
Drug Targets Gastrointestinal Cancer
The FDA has recently approved Ayvakit (avapritinib) for the treatment of unresectable and metastatic gastrointestinal stromal tumor (GIST) that occurs most...
FEB 14, 2020
Cancer
FEB 14, 2020
Cataloging Cancer: DNA fingerprints at work
New research published as part of a global Pan-Cancer Project highlights the world’s most comprehensive catalog to date of DNA fingerprints of cancer...
Loading Comments...