OCT 26, 2017 02:38 PM PDT

Hot Stuff! These Nanoparticles Kill Cancer Cells with Heat

WRITTEN BY: Xuan Pham

Image credit: Pixabay.com

Scientists have devised numerous ways to kill cancer. However, the long-standing caveat is that most effective methods of killing cancer cells also end up harming the patients in some way. Thus, in some cases, cancer treatments become a delicate balancing act for both doctors and patients.

One common method to kill cancer is through radiation, a process that zaps cancer cells with high-energy waves like X-rays or gamma rays. This damages the cancer’s DNA so that the cells die and the tumor shrinks. However, radiation is indeed harmful and can damage healthy cells in addition to cancer cells. Furthermore, some type of radiation therapy can cause burn damage and irritation to the tissues exposed to the high-energy waves.

To more precisely target cancer cells, scientists at the University of Surrey in the United Kingdom and Dalian University of Technology in China designed nanoparticles with a self-regulating temperature control. Instead of radiation, this technique kills cancer cells with heat, also known as hyperthermia or thermal therapy.

But for hyperthermia to be effective, researchers had to design a therapy that met a narrow temperature range of between 42°C and 45°C (108°F and 113°F). Above this range, healthy cells would suffer, and below this range, cancer cells would continue to thrive.

"If we can keep cancer treatment sat at a temperature level high enough to kill the cancer, while low enough to stop harming healthy tissue," said Ravi Silva, head of the Advanced Technology Institute at the University of Surrey, and the study’s senior author, "it will prevent some of the serious side effects of vital treatment."

In order to meet this criteria, the team turned to magnetic nanoparticles that can be heated by an external magnetic field. The team then outfitted the magnetic nanoparticles with chromium (Cr), a sophisticated modification that prevented these nanoparticles from overheating. In essence, the cobalt-zinc-chromium (Co-Zn-Cr) nanoparticles followed the “Curie temperature” principle, which mean they lose their magnetic properties at above 45°C. Thus, these magnetic nanoparticles can prove lethal to tumors but safe to healthy cells.

"By making magnetic materials with the Curie temperature falling in the range of hyperthermia temperatures, the self-regulation of therapeutics can be achieved,” explained Wei Zhang, a professor at the Dalian University of Technology, and the study’s lead author. Such elegant chemistry would bypass “clumsy temperature monitoring and controlling systems."

The teams are working to further optimize and validate this technique. So far in cells, the nanoparticles show “low toxicity,” suggesting the product could be safe in organisms.

“This could potentially be a game-changer in the way we treat people who have cancer,” said Silva

Additional source: MNT

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
JUL 26, 2018
Genetics & Genomics
JUL 26, 2018
When a Cancer Gene Switches Sides
All cells carry a gene named p53, which has a vital role in shielding the body from cancer. But it can betray cells too....
SEP 02, 2018
Cell & Molecular Biology
SEP 02, 2018
Cancer Cell Lines can Evolve in the Lab
New research shows that scientists have to take steps to verify the identity of the cell lines they grow....
OCT 05, 2018
Cancer
OCT 05, 2018
FDA approves a new drug for an advanced type of skin cancer
As cancer is one of the most challenging diseases in our world, many efforts have been put into researching new ways for treatment to find new drugs that could help more patients worldwide. A...
OCT 06, 2018
Drug Discovery
OCT 06, 2018
New Class of Drugs for Breast Cancer Therapy
Scientists at Stevens Institute of Technology have designed a new class of molecules that may hold the potential to add to the arsenal of drugs actively be...
NOV 14, 2018
Immunology
NOV 14, 2018
Rapid Tumor Targeting
Researchers at the University of California Irvine have developed a technology that will rapidly identify and target T cell receptors for tumor specific antigens...
NOV 15, 2018
Drug Discovery
NOV 15, 2018
Making Cancer Disappear?
Neuroblastoma is one of the most common childhood cancers and the leading cause of cancer deaths among pediatric patients younger than 5. The cancer is fre...
Loading Comments...