JAN 09, 2018 11:05 AM PST

Alcohol Harms Stem Cell DNA, Increases Cancer Risk

WRITTEN BY: Julia Travers

Alcohol can have several negative effects on our bodies, particularly when imbued in large quantities, including damaging our livers, straining our hearts, weakening our immune systems and increasing our risk for cancer. A new study in the journal Nature from the Medical Research Council Laboratory of Molecular Biology at Cambridge University shows that one of the primary ways drinking alcohol increases the likelihood of developing cancer is through causing damage to human stem cells.

Illustration of one way alcohol can cause cancer, credit: http://www.telegraph.co.uk

“This paper provides very strong evidence that an alcohol metabolite causes DNA damage [including] to the all-important stem cells that go on to make tissues,” Lead Author and Professor Ketan Patel says.

When the body breaks down alcohol, a chemical called acetaldehyde is produced, which is known to be damaging to cell DNA. It can cause mistakes and clumps in DNA as well as chromosome rearrangements, all of which can lead to cancer. If the level of alcohol consumed is low, the body can usually break down most of the acetaldehyde into a less toxic, energy-rich byproduct called acetate – some heavy drinkers get a temporary and probably addictive boost in brain function from acetate surging in their bodies. However, the body can fall behind or become overwhelmed with the amount of acetaldehyde it must break down, particularly with high levels of alcohol consumption. When the body struggles to break down alcohol in the liver, where most metabolism takes place, as well as in the secondary metabolizing tissues of the pancreas, brain and gastrointestinal tract, all of these areas can be damaged.

Along with the ability to break down the acetaldehyde, the body has a second line of defense: repairing the acetaldehyde-damaged DNA. However, both of these processes are imperfect and subject to dangerous failures. Some people have a genetic deficiency in aldehyde dehydrogenase 2 (ALDH2), an enzyme that can prevent harmful buildups of acetaldehyde. This condition puts them at greater risk for alcohol-related cell damage and is most common in people of East Asian ancestry. Also, even for people with more of this helpful enzyme, the DNA-repair process does not always work.

“DNA damage leads to cell death, if unchecked, but it also triggers mechanisms that act to repair the broken DNA, allowing the cells to survive. However, if the DNA is repaired incorrectly this can lead to cancer,” Group Leader at the Francis Crick Biomedical Institute and Professor Robin Lovell-Badge says. Similarly, Patel explains “it’s important to remember that alcohol clearance and DNA repair systems are not perfect, and alcohol can still cause cancer in different ways, even in people whose defense mechanisms are intact.”

Patel and his colleagues focused on stem cells within the blood of mice in their research. Blood stem cells are responsible for producing new supplies of blood during an entire lifetime. When they disabled the mice’s two possible defenses against acetaldehyde, the stem cells’ DNA became increasingly damaged and the cells completely stopped working.

The scientists think the effects they observed could be similar in other cell types and now want to explore why drinking is more likely to cause certain cancers, according to The Guardian. 

About the Author
  • Julia Travers is a writer, artist and teacher. She frequently covers science, tech and conservation.
You May Also Like
JUL 30, 2018
Cancer
JUL 30, 2018
Key Markers in Melanoma Disease Progression
Researchers have found key markers in identifying the progression of melanoma by stages....
AUG 14, 2018
Cancer
AUG 14, 2018
Can Zika Virus Help Neuroblastoma Patients?
Researchers in Florida published the potential for Zika virus to help in the treatment of Neuroblastoma in patients of all ages....
OCT 30, 2018
Drug Discovery
OCT 30, 2018
Re-sensitizing Drug-resistant Human Tumor Cells
Understanding how cancer cells avoid death despite their DNA being damaged will create new strategies to enhance cancer cell killing through chemotherapy t...
NOV 12, 2018
Cancer
NOV 12, 2018
Targeted radiation therapy may provide new hope to children with difficult-to-treat liver cancer
Primary malignant liver tumors are rare in children with an occurrence rate of 1-2% of all childhood cancers. Radical surgical resection of the liver which means the removal of part of the li...
NOV 12, 2018
Health & Medicine
NOV 12, 2018
Researchers find that obesity has a paradoxical effect on Cancer
Cancer therapy works differently in different people. Understanding what effects the individual body's response to treatment will be crucial for the development...
DEC 05, 2018
Cancer
DEC 05, 2018
Zika virus as a weapon against brain cancer
Glioblastoma is the most aggressive type of Brain Cancer with an average survival rate of less than two years with treatment. So what if there could be a cure for this type of cancer....
Loading Comments...