JAN 20, 2016 2:47 PM PST

Protein Clusters Keep Heart Muscle Cells Beating in Sync

WRITTEN BY: Kara Marker
Proteins responsible for the pumping force of the heart beat and muscle cell contraction appear to cluster together in intercalated discs in an extremely organized fashion. Scientists from the NYU Langone Medical Center have produced never-before-seen images of the protein cluster distribution and could potentially translate the patterns into indicators of increased risk for dangerous heart arrhythmia conditions.
 
According to their images, obtained at “nanometer resolution” with ion beam-scanning electron microscopy from the intercalated discs of mice, if the protein cluster spacing is disturbed by even a billionth of a meter, an irregular heart beat can result. Senior investigator Mario Delmar, MD, PhD, plans to study human cells next to see if this characteristic remains true in the intercalated discs of human heart cells.
 
"The closeness of the proteins is probably essential to coordinating the electrical properties of the heartbeat," said co-corresponding author of the study published in Nature Communications, Eli Rothenberg, PhD.
 
The intercalated discs contain clusters of cadherins and sodium ion channels, responsible for pumping force and heart muscle cell contraction, respectively. Mutations can alter their clustering organization to the point where proteins cannot effectively communicate with each other, and they fail to keep the heart pumping in synchrony.
 
An intercalated disc

Delmar’s ultimate goal is to create a blood test to easily test for abnormal intercalated disc clustering to help more people determine their risk for developing an arrhythmia. His current studies with mouse cells and future studies with human cells already provides insight into diagnosing heart disease risk. Delmar is especially interested in identifying where protein cluster organization parameters fall on a spectrum of heart disease risk. Depending on individual cases of cluster proximity, health professionals could assign varying degrees of risk to patients.
 
"Assessing risk for arrhythmia based on real-time, structural analysis instead of guesswork based on heredity would represent a major advance," said Delmar.
 

Source: NYU Langone Medical Center / New York University School of Medicine
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAR 02, 2021
Cardiology
Creating a Light Switch in the Heart to Regulate Heart Rate
MAR 02, 2021
Creating a Light Switch in the Heart to Regulate Heart Rate
Often when it is dark, we go for a flashlight or our phone to see where we are going. What if I told you that is much th ...
MAR 28, 2021
Genetics & Genomics
Fish Oil Benefits May Depend on a Person's Genetics
MAR 28, 2021
Fish Oil Benefits May Depend on a Person's Genetics
The benefits of fish oil have been debated for years. New research can explain why it's been difficult to reach a solid ...
APR 13, 2021
Cardiology
Can a Ketosis Metabolite Act as a Biomarker for Cardiovascular Diseases?
APR 13, 2021
Can a Ketosis Metabolite Act as a Biomarker for Cardiovascular Diseases?
Quick and reliable diagnostics are the key to controlling many diseases, including cardiovascular disease. Biomarkers ar ...
APR 20, 2021
Cardiology
How Low Can You Go? Diastolic Blood Pressure Standards May Change
APR 20, 2021
How Low Can You Go? Diastolic Blood Pressure Standards May Change
Blood pressure readings are a standard part of even the most basic health checks. Now some researchers are suggesting th ...
MAY 12, 2021
Cardiology
Reversing the Heart Damage Seen in Marfan Syndrome
MAY 12, 2021
Reversing the Heart Damage Seen in Marfan Syndrome
Marfan syndrome is a genetic disorder that disrupts the connective tissues that anchor and link the body's organs, affec ...
JUN 18, 2021
Drug Discovery & Development
FDA Approves First New Drug Since 2014 for Weight-loss
JUN 18, 2021
FDA Approves First New Drug Since 2014 for Weight-loss
A new medication called ‘Wegovy’ produced by Novo Nordisk has been approved by the Food and Drug Administrat ...
Loading Comments...