MAR 02, 2016 3:59 PM PST

Chronic Inflammation, Free Radicals, and Coronary Heart Disease

WRITTEN BY: Kara Marker
Cornelia Weyand, MD, and her team of scientists from Stanford University School of Medicine are investigating the causes of coronary heart disease, but they are not looking at lipid accumulation. Instead, Weyand’s team is studying another factor leading to heart disease: inflammation. 
 


"We've pinpointed a defect in glucose metabolism by a class of arterial-plaque-associated immune cells as a key factor driving those cells into a hyper-inflammatory state," Weyand explained. The study she led was published in The Journal of Experimental Medicine.

Almost half of all deaths in the United States can be attributed to coronary heart disease, where a blockage of blood flow through the arteries to the heart is impaired. Atherosclerosis, which is usually the precursor to a coronary heart disease-related heart attack, is the buildup of plaque in the blood vessels that challenges healthy blood flow. 

Other than collection of lipid deposits in the arteries, chronic inflammation is also to blame. In addition to lipids, plaque contains immune cells called macrophages. While some variants of these cells play a purely amicable role in body health, breaking down cellular debris, promoting cellular growth and blood flow, and engaging in tissue repair, some variants go rogue. 

Inflammatory macrophages, called M1, respond to pathogens by recruiting other immune cells and attack pathogenic cells head on by producing free radicals. Although this function is definitely necessary when pathogens invade, overactivity can also exacerbate the severity of coronary heart disease. 

Weyand believes that the inflammatory power of the M1 macrophages may overshadow their other duties: “macrophages are so preoccupied with their inflammatory power trip they neglect their clean-up tasks.”

Weyand and her team examined 140 patients’ blood samples with coronary heart disease, looking at monocytes, the precursors of macrophages. Each patient had experienced at least one heart attack. They compared these cells to those of 105 healthy and “demographically matched” control participants. After differentiating the monocytes into macrophages in the lab, they saw that the “monocytes from patients with coronary artery disease had a pronounced predisposition to develop into inflammatory, interleukin-6-producing M1 macrophages.”

In addition, patients with additional risk factors for coronary heart disease such as Type 2 diabetes, hyperlipidemia, and hypertension produced even more interleukin-6.

“The greater the number of these risk factors they had, the more IL-6 their macrophages made,” said Weyand. 

Next, Weyand and her team looked to identify what was causing certain monocytes to “turn to the dark side.” Their first observation was that coronary artery disease patients’ macrophages contained twice as many free radicals than macrophages from healthy people. They also found out that glucose metabolism within the mitochondria was responsible for the free radical activity. 

"The primary problem, we learned, is that these macrophages take up glucose at a higher rate than normal cells do," said Weyand. "That causes them to break it down faster, overheating their mitochondria, which then produce too many free radicals."

The team is currently working on various interventions to prevent overproduction of free radicals that lead to an increased risk for coronary heart disease and heart attacks. In addition to blocking or reducing glucose uptake and manually removing free radicals, manipulating the action of a certain enzyme involved in breaking down glucose, PKM2, is also a candidate for therapy.
 

Source: Stanford University School of Medicine 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
AUG 20, 2020
Cardiology
Cilia are Found to Have Vesicles That May Influence Heart Disease
AUG 20, 2020
Cilia are Found to Have Vesicles That May Influence Heart Disease
Cells have many specialized organelles, including a kind of signaling hub called a cilium, which sticks out of the surfa ...
SEP 03, 2020
Cardiology
Does Hypertension Make It Harder to Recognize Others Emotions?
SEP 03, 2020
Does Hypertension Make It Harder to Recognize Others Emotions?
Have you ever felt your blood pressure rise when you get angry or stressed? Well, this phenomenon is unique in that it l ...
SEP 22, 2020
Cardiology
Investigating the Mechanism Behind 5-Fluorouracil's Cardiotoxicity
SEP 22, 2020
Investigating the Mechanism Behind 5-Fluorouracil's Cardiotoxicity
Cancer therapies have come quite far, with several options available for many cancers. An issue that has plagued many of ...
OCT 15, 2020
Immunology
The Immune Cells Giving Menopausal Women Higher BPs
OCT 15, 2020
The Immune Cells Giving Menopausal Women Higher BPs
In general, men have higher blood pressures than women, giving them an increased risk of developing heart disease. After ...
JAN 12, 2021
Cardiology
SGLT2 Inhibitors Can Reduce the Cardiovascular Risk for Diabetics Being Treated with Insulin
JAN 12, 2021
SGLT2 Inhibitors Can Reduce the Cardiovascular Risk for Diabetics Being Treated with Insulin
One of the biggest problems that come alongside diabetes is the increased risk of cardiovascular disease. Treatment of d ...
FEB 02, 2021
Cardiology
Investigating a Stress Protein's Relation to Heart Failure
FEB 02, 2021
Investigating a Stress Protein's Relation to Heart Failure
As medicine advances, the world’s population gradually becomes older and older. Cardiovascular disease becomes mor ...
Loading Comments...