OCT 11, 2016 11:00 AM PDT

Can math predict erratic heartbeats?

Image Credit: iStockphoto

Scientists have figured out a new way to predict some cardiac arrhythmias several steps before they occur.

The finding may lead to an improved cardiac device designed to detect when arrhythmias are about to occur and then act to prevent them.

For the new study, researchers focused on a potentially fatal form of arrhythmia occurring in a condition called the long QT syndrome, which runs in families. Patients who have this heart rhythm disorder can sometimes have heartbeats with an abnormal electrical pattern, called alternans, in which long and short heartbeats alternate with one another.

Once the alternans pattern occurs, it can be easy to detect, but the difficulty has been in figuring out how to predict it. To find the answer, researchers turned to math.

They took cells from the hearts of embryonic chickens and grew tiny clusters of cells that are able to beat on their own. Then they administered a drug to induce an abnormal heartbeat while using a camera to record how the heartbeat changed. “This experiment mimics the abnormal heartbeat patterns of patients with arrhythmia,” says Alvin Shrier, chair of physiology at McGill University.

The team was able to predict when the ball of cells was going to switch from a normal rhythm to these alternans. “There is a transition period in which the variability of the rhythm increases and the pattern gets messy,” Shrier says.

“Sometime after that transition, the alternans start. One interval is a little bit longer, and the next one is a little shorter, but with time the difference in the intervals increase and the pattern becomes very clear.”

Researchers designed a math function describing this messy transition that can be used to predict the alternans.

If further experiments confirm our results, we can imagine cardiac devices software could use a similar function to predict when a person’s heart is taking the first step towards alternans,” says main author and PhD candidate Thomas Quail. “This means a device could reset the heartbeat much earlier than current ones, avoiding a distressing experience for the patient and potential damage to the heart.”

The math problem researchers had to solve to get there is actually common to many fields: How does something following a pattern (for example, the electrical variations in a healthy heart) transition to another pattern (like the one of an abnormal heartbeat)?

“The work demonstrates the possibility for predicting what we call dynamical transitions. We did it for cardiac rhythms, but the math can also apply to predicting financial, ecological, and climactic transitions,” says Leon Glass, chair in cardiology and professor of physiology.

The Heart and Stroke Foundation of Canada, the Canadian Institutes of Health Research (CIHR), and the Natural Sciences and Engineering Research Council of Canada (NSERC) funded the work, which appears in the Proceedings of the National Academy of Sciences (PNAS).

Source: McGill University

This article was originally published on Futurity.org.
About the Author
MS
Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
JAN 19, 2022
Cell & Molecular Biology
Immune Cells Can 'Smell' Their Environment
JAN 19, 2022
Immune Cells Can 'Smell' Their Environment
Immune cells called macrophages are on the front lines of our body's defense system; macrophages can detect pathogens an ...
FEB 10, 2022
Drug Discovery & Development
Muscle Techniques Ease Dizziness from Low Blood Pressure
FEB 10, 2022
Muscle Techniques Ease Dizziness from Low Blood Pressure
Two muscle techniques that are free of cost and easy to implement can reduce dizziness upon standing for those with hypo ...
FEB 16, 2022
Cardiology
The Future of Artificial Intelligence and Valvular Heart Disease
FEB 16, 2022
The Future of Artificial Intelligence and Valvular Heart Disease
The heart is made up of valves that open and close with blood flow as the heart muscle relaxes and contracts. Valvular h ...
APR 26, 2022
Cardiology
Another Study Shows Alcohol Is Bad for the Heart
APR 26, 2022
Another Study Shows Alcohol Is Bad for the Heart
Several recent studies have shown that any amount of alcohol consumption raises cardiovascular disease risk.
MAY 31, 2022
Cardiology
Sitting Is an Independent Risk Factor for Heart Disease
MAY 31, 2022
Sitting Is an Independent Risk Factor for Heart Disease
TV viewing, sitting during work, and even riding in cars can lead to worse heart health.
JUL 05, 2022
Cardiology
Certain Gut Bacteria Make Blood Pressure Drugs Less Effective
JUL 05, 2022
Certain Gut Bacteria Make Blood Pressure Drugs Less Effective
A new study has shown that gut bacteria reduce the effectiveness of some blood pressure medications.
Loading Comments...