JAN 24, 2017 9:45 AM PST

How to rebuild heart's layers with stem cells

Image Credit: Getty Images

A process using human stem cells can generate the epicardium cells that cover the outer surface of a human heart.

“In 2012, we discovered that if we treated human stem cells with chemicals that sequentially activate and inhibit Wnt signaling pathway, they become myocardium muscle cells,” says Xiaojun Lance Lian, assistant professor of biomedical engineering and biology, who is leading the study at Penn State.

Myocardium, the middle of the heart’s three layers, is the thick, muscular part that contracts to drive blood through the body.

The Wnt signaling pathway is a group of signal transduction pathways made of proteins that pass signals into a cell using cell-surface receptors.

“We needed to provide the cardiac progenitor cells with additional information in order for them to generate into epicardium cells, but prior to this study, we didn’t know what that information was,” says Lian. “Now, we know that if we activate the cells’ Wnt signaling pathway again, we can re-drive these cardiac progenitor cells to become epicardium cells, instead of myocardium cells.”

The group’s results, published in Nature Biomedical Engineering, bring them one step closer to regenerating an entire heart wall.

Heart attack damage

The researchers found that the generated epicardium cells were similar to epicardium cells in living humans and those grown in the laboratory.

“The last piece is turning cardiac progenitor cells to endocardium cells (the heart’s inner layer), and we are making progress on that,” says Lian.

The group’s method of generating epicardium cells could be useful in clinical applications, for patients who suffer a heart attack.

“Heart attacks occur due to blockage of blood vessels,” says Lian. “This blockage stops nutrients and oxygen from reaching the heart muscle, and muscle cells die. These muscle cells cannot regenerate themselves, so there is permanent damage, which can cause additional problems.

“These epicardium cells could be transplanted to the patient and potentially repair the damaged region.”

During their study, the researchers engineered the human stem cells to become reporter cells, meaning these cells expressed a fluorescent protein only when they became epicardium cells.

“We treated the cells with different cell signaling molecules, and we found that when we treated them with Wnt signaling activators, they became fluorescent,” says Lian.

Regenerate entire heart wall

Another finding, he says, is that in addition to generating the epicardium cells, the researchers also can keep them proliferating in the lab after treating these cells with a cell-signaling pathway transforming growth factor beta (TGF) inhibitor.

“After 50 days, our cells did not show any signs of decreased proliferation. However, the proliferation of the control cells without the TGF Beta inhibitor started to plateau after the tenth day,” says Lian.

The team will continue working together to further their research on regenerating endocardium cells.

“We are making progress on that inner layer, which will allow us to regenerate an entire heart wall that can be used in tissue engineering for cardiac therapy,” says Lian.

Additional researchers on this project are from the University of Wisconsin, Madison; AstraZeneca, Sweden; and Leiden University Medical Center, the Netherlands.

The National Institutes of Health, the National Science Foundation, Penn State’s College of Engineering, and the University of Wisconsin Stem Cell and Regenerative Medicine Center supported this work.

Source: Penn State

About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
JUN 19, 2019
Genetics & Genomics
JUN 19, 2019
Genetic Link to Heart Disease is Stronger Than Thought
Previous work did not look at the impact of small changes in regulatory genes....
JUL 20, 2019
Cardiology
JUL 20, 2019
Hacking Fat Cells
The high-fat energy-dense diet we consume today is nothing like what humans ate for all of history before us. Luckily, we no longer have to hunt and kill o...
AUG 08, 2019
Cardiology
AUG 08, 2019
The Best Way to Test Blood Pressure and Find Heart Disease
Heart disease causes hundreds of thousands of deaths annually -- can a new study on blood pressure tests guide doctors toward earlier diagnosis? About one ...
SEP 10, 2019
Genetics & Genomics
SEP 10, 2019
Gene Mutations Link Flu Infections and Heart Trouble
Sometimes people develop life-threatening heart complications when they're infected with the flu....
NOV 01, 2019
Clinical & Molecular DX
NOV 01, 2019
myTAIHEART Blood Test and Biopsy of Heart Transplant Recipients
Transplant rejection is a process where the immune system of the patient consider the donor's organ as foreign and rejects them. This is because t...
JAN 03, 2020
Cardiology
JAN 03, 2020
Healthy Sleep May Offset Genetic Heart Disease Risk
People with a high genetic risk of heart disease or stroke may be able to offset that risk with healthy sleep patterns, according to new research. The rese...
Loading Comments...