APR 27, 2015 2:56 PM PDT

Model Strips Away Mechanisms of Malaria Infection

WRITTEN BY: Judy O'Rourke
Molecular biologists and engineers who study how malaria causes red blood cells to stiffen have found that a model of a malaria-infected red blood cell may give rise to better ways to treat the disease.

While normal red blood cells measure about 8 microns in size (but can circulate in the microvascular system with a diameter of 1 to 2 microns because they are flexible, deformable, and durable), cells infected with the Plasmodium falciparum parasite-the most virulent form of malaria parasite-become stiff and sticky and become lodged in small blood vessels while the parasite is developing and so avoid the filtering action of the spleen.
The red blood cell in the top left is infected with the malaria parasite and has developed knobs on its surface.  The enlargement shows the cytoskeleton network.
When this occurs in the brain, cerebral malaria results, a complication that can be fatal, according to the Centers for Disease Control and Prevention (CDC).

The malaria community knew that red blood cells get stiff and sticky when they become infected, and were pretty sure why the stickiness occurs-but questions remain about why these cells become so stiff. "You can't really treat the disease if you don't understand the mechanism," says Sulin Zhang, associate professor of engineering science and mechanics, Penn State.

Leann Tilley, professor of biochemistry and molecular biology, University of Melbourne, suggested to Zhang that an engineering approach might help.

Red blood cells are one of the simplest human cells. A fatty, two-dimensional bilayer pairs with a protein-rich cytoskeleton to form the membrane. Normally, the red blood cell's surface is smooth and the cell is deformable, but when infected with a malaria parasite, small protein nodules called knobs form on the surface. The size and number of knobs change as the parasite matures.

To understand the stiffening process, the team developed a model of the red blood cell that helped them understand what the knobs did to stiffen the cell membrane.

The researchers published the results of their model in the April 27 online issue of Proceedings of the National Academy of Sciences in an article titled "Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite."

The model found that the knobs, being stiff, contribute to cell membrane stiffness. At the same time the presence of the knobs elevates the strain in the cytoskeleton and because the cytoskeleton itself is strain-hardening-the higher the strain, the higher the stiffness-this also stiffens the membrane.

Also, as the number of knobs increase, the number of linkages between the lipid bilayer and the protein cytoskeleton also increases. This further stiffens the cell.

"A promising way to treat the disease is to soften the cells," Zhang says. "If we could find drug molecules that break the protein links between the knobs and the cytoskeleton, we could soften it."

According to the CDC, P. falciparum, found worldwide in tropical and subtropical areas, is estimated to kill one million people each year, especially in Africa. This species of malaria parasite can cause severe malaria because it multiples rapidly in the blood, and can thus cause severe blood loss (anemia).

[Source: Penn State]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
MAR 08, 2020
Genetics & Genomics
MAR 08, 2020
Zigzagging DNA
Cells have to store the entire genome in the nucleus, and this lengthy DNA molecule has to be carefully packaged by prot ...
APR 20, 2020
Cell & Molecular Biology
APR 20, 2020
Worst COVID-19 Cases May be Caused by Immune Cell Overactivity
The SARS-CoV-2 virus causea huge range of symptoms, and researchers are learning more about the worst cases, which may h ...
APR 26, 2020
Genetics & Genomics
APR 26, 2020
Does Poor Sleep Lead to Obesity, or is the Opposite True?
For many years, researchers have been aware of the link between obesity and poor sleep or a lack of sleep. But what come ...
MAY 13, 2020
Cell & Molecular Biology
MAY 13, 2020
Combined with Fasting-Mimicking Diet, Vitamin C May Have Anti-Cancer Effect
People have long been searching for natural ways to treat cancer in an effort to avoid some of the harmful side effects ...
MAY 20, 2020
Cardiology
MAY 20, 2020
Metabolite Responsible for Poor Metabolic Response to Exercise Identified
For some, working out just doesn’t pay off. A recent study published in Cardiovascular Research by the H ...
MAY 16, 2020
Neuroscience
MAY 16, 2020
Stem Cell Method (Parkinson's) Could Avoid Transplant Rejection
Researchers at McLean Hospital and Massachusetts General Hospital (MGH) have tested a stem cell treatment method that av ...
Loading Comments...