JUN 21, 2018 5:22 PM PDT

Are Patterns in Biology Governed by a Turing Theory?

WRITTEN BY: Carmen Leitch

Alan Turing was a mathematician and logician who did important work not only in computing but in a variety of fields including biology. He developed a theory about the formation of patterns in biological systems. New research by scientists at EMBL has expanded on his work; it can now help show whether or not the theory is valid, and that result could have a big impact on tissue engineering. This work has been reported in Physical Review X.

EMBL scientists extend Turing's theory to help understand how biological patterns are created. IMAGE - Xavier Diego, EMBL. / Credit:  Xavier Diego, EMBL

Turing proposed that all the patterns we observe in nature, like the petals on flowers or a zebra’s stripes, come down to unique chemical interactions between molecules that are moving through space. The theory doesn’t only apply to biology; it may have implications for many fields including astrophysics. Scientists haven't been able to build conclusive proof that biological patterns are regulated by Turing’s theory. 

 In this study, researchers Xavier Diego, James Sharpe and others assessed computational evidence, finding that Turing’s theory was more flexible than had been thought. To continue their research, the investigators used a type of mathematics that applies to networks and systems, called graph theory. They found that many of the foundations of the Turing system are determined by network topology, which is how feedback from components of the network is structured. This work has led to a new understanding of Turing systems and shown how to make one successfully.

In a Turing system, an activator has to diffuse more slowly than some inhibitor, which creates a pattern. Most models have required too much fine-tuning, which prevents its real application.

"We learned that studying a Turing system through the topological lens really simplifies the analysis. For example, understanding the source of the diffusion restrictions becomes straightforward, and more importantly, we can easily see what modifications are needed to relax these restrictions," explained first author Xavier Diego.

"Our approach can be applied to general Turing systems, and the properties will be true for networks with any number of components. We can now predict if the activity in two nodes in the network is in or out of phase, and we also found out which changes are necessary to switch this around. This allows us to build networks that make any desired pair of substances overlap in space, which could have interesting applications in tissue engineering."

A pictorial method was also provided, to allow researchers to analyze existing networks or design new ones easily. "We call them 'Turing hieroglyphs' in the lab," said EMBL Barcelona group leader James Sharpe. "By using these hieroglyphs, we hope that our methods will be adopted by both theoreticians and by experimental groups that are trying to implement Turing networks in biological cells."

This new research should aid in the production of biological patterns in the laboratory. That will help show whether or not the theory is valid.


Sources: AAAS/Eurekalert! Via EMBL, Brittanica, Physical Review X

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 23, 2021
Cell & Molecular Biology
There Are 'Hotspots' of Genomic Repair in Neurons
APR 23, 2021
There Are 'Hotspots' of Genomic Repair in Neurons
It's thought that unlike cell types that are constantly replenishing themselves (like many types of blood cells, for ...
MAY 03, 2021
Cell & Molecular Biology
Are Retrons the Next CRISPR?
MAY 03, 2021
Are Retrons the Next CRISPR?
After being identified in the 1980s, it was thought that retrons were just an odd feature of some bacterial cells. But e ...
MAY 06, 2021
Cell & Molecular Biology
Improved Genetic Technologies Find Elusive Genetic Mutations
MAY 06, 2021
Improved Genetic Technologies Find Elusive Genetic Mutations
Some genetic diseases are caused by inborn errors - genetic mutations that we're born with and that end up in every cell ...
MAY 18, 2021
Genetics & Genomics
The Oral Microbiome Reveals How Long We've Loved Starchy Foods
MAY 18, 2021
The Oral Microbiome Reveals How Long We've Loved Starchy Foods
Bacteria are everywhere, including our guts and mouths. Researchers are learnings more about the history of the human mi ...
MAY 19, 2021
Genetics & Genomics
The Genetic Secrets of Long-Lived People
MAY 19, 2021
The Genetic Secrets of Long-Lived People
For 2019, the United Nations estimated that the average life expectancy for a person is 72.6 years of age. People that l ...
JUN 07, 2021
Cardiology
Researchers Find a Way to Improve Outcomes After a Heart Attack
JUN 07, 2021
Researchers Find a Way to Improve Outcomes After a Heart Attack
It's thought that in the United States, there is a heart attack once every 40 seconds, or that each year, about 80,0 ...
Loading Comments...