JUN 21, 2018 05:22 PM PDT

Are Patterns in Biology Governed by a Turing Theory?

WRITTEN BY: Carmen Leitch
2 3 238

Alan Turing was a mathematician and logician who did important work not only in computing but in a variety of fields including biology. He developed a theory about the formation of patterns in biological systems. New research by scientists at EMBL has expanded on his work; it can now help show whether or not the theory is valid, and that result could have a big impact on tissue engineering. This work has been reported in Physical Review X.

EMBL scientists extend Turing's theory to help understand how biological patterns are created. IMAGE - Xavier Diego, EMBL. / Credit:  Xavier Diego, EMBL

Turing proposed that all the patterns we observe in nature, like the petals on flowers or a zebra’s stripes, come down to unique chemical interactions between molecules that are moving through space. The theory doesn’t only apply to biology; it may have implications for many fields including astrophysics. Scientists haven't been able to build conclusive proof that biological patterns are regulated by Turing’s theory. 

 In this study, researchers Xavier Diego, James Sharpe and others assessed computational evidence, finding that Turing’s theory was more flexible than had been thought. To continue their research, the investigators used a type of mathematics that applies to networks and systems, called graph theory. They found that many of the foundations of the Turing system are determined by network topology, which is how feedback from components of the network is structured. This work has led to a new understanding of Turing systems and shown how to make one successfully.

In a Turing system, an activator has to diffuse more slowly than some inhibitor, which creates a pattern. Most models have required too much fine-tuning, which prevents its real application.

"We learned that studying a Turing system through the topological lens really simplifies the analysis. For example, understanding the source of the diffusion restrictions becomes straightforward, and more importantly, we can easily see what modifications are needed to relax these restrictions," explained first author Xavier Diego.

"Our approach can be applied to general Turing systems, and the properties will be true for networks with any number of components. We can now predict if the activity in two nodes in the network is in or out of phase, and we also found out which changes are necessary to switch this around. This allows us to build networks that make any desired pair of substances overlap in space, which could have interesting applications in tissue engineering."

A pictorial method was also provided, to allow researchers to analyze existing networks or design new ones easily. "We call them 'Turing hieroglyphs' in the lab," said EMBL Barcelona group leader James Sharpe. "By using these hieroglyphs, we hope that our methods will be adopted by both theoreticians and by experimental groups that are trying to implement Turing networks in biological cells."

This new research should aid in the production of biological patterns in the laboratory. That will help show whether or not the theory is valid.

Sources: AAAS/Eurekalert! Via EMBL, Brittanica, Physical Review X

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 23, 2018
Cell & Molecular Biology
MAY 23, 2018
Understanding Eye Lens Development
As the lens forms during development, its cells have to degrade some of their own parts.
JUN 13, 2018
JUN 13, 2018
Hemp Fabric Kills Staph Bacteria
Cloth made from hemp outperforms many other textiles in staph resistance.
JUN 16, 2018
Clinical & Molecular DX
JUN 16, 2018
Nanoparticles Deliver "Theranostics" for Cancer Patients
New technology combing therapeutic agents and diagnostics (theranostics) can be used to deliver drugs to cancer cells. From the Moscow Institute of Physics
JUN 24, 2018
Genetics & Genomics
JUN 24, 2018
Cell Division Ceases When CD36 Kicks in
In life, our cells experience a massive amount of turnover, on the order of billions every day. But as cells age, they stop dividing.
JUL 08, 2018
JUL 08, 2018
Natural Molecule has a Potent Anti-inflammatory Impact
A compound that is naturally made by a bacterium called Francisella tularensis can impair the immune response.
JUL 19, 2018
Cell & Molecular Biology
JUL 19, 2018
Stopping Structural Changes in Collagen may Prevent Lung Fibrosis
Lung fibrosis is a serious condition that thickens tissues in the lungs and makes it hard to breathe.
Loading Comments...