AUG 12, 2018 10:13 AM PDT

A Small Set of Cells Acts as a Timekeeper

WRITTEN BY: Carmen Leitch

Humans have adjusted to a daily rhythm, and our bodies rely on timing. That becomes apparent when we cross time zones. Researchers have learned more about a small group of neurons that plays a critical part in the control of that daily cycle. Called the suprachiasmatic nucleus, or SCN, these neurons might be adjustable, and they have therapeutic potential. The work has been reported in Neuron.

The master clock of the body influences many different processes; the 20,000 neurons that form the SCN can get disrupted by major schedule changes that people make. The scientists found that in a mouse model, altering the electrical activity in only ten percent of those neurons allowed mice to adjust to a new schedule rapidly.

"Just like your watch is good at keeping time but is useless unless you can set it to local time, we wondered how the body clock adjusts to its local time,”  explained Erik Herzog, professor of biology in Arts & Sciences at Washington University in St. Louis.

A small number of neurons on the SCN produce a molecule called vasoactive intestinal polypeptide or VIP, which helps neurons sync with one another during the daily cycle. The Herzog lab focused their research on that population of cells, about 2,000 VIP neurons.

"We hypothesized that VIP neurons are like the grandmothers who are in charge of telling everyone what to do," Herzog said. 

Cristina Mazuski, a graduate candidate in the Herzog lab, created a way to assess signaling in VIP neurons. By measuring the action potentials in those neurons (when electrical impulses travel through them), two classes were identified. Tonic VIP neurons have a steady, evenly paced firing rate while VIP irregular neurons fire twice or thrice with an even interval after each fire. 

Next, the scientists activated those neurons to see how it shifted the daily clock. Kept in total darkness at all times, their mouse model had no clue about the time. With optogenetics, in which genes can be controlled with light, the team made only the VIP neurons fire in unison at the same time, to mimic a change in time zones. "This was an important step to understand how the SCN keeps organisms synced to their local light schedule," Mazuski explained.

By testing different firing patterns in VIP neurons, it was found that activating irregular firing in the VIP neurons made the mice get over jet lag quicker. A tonic firing pattern, however, resulted in a slower adjustment.
"We found the irregular pattern causes VIP neurons to release VIP," Herzog revealed. "VIP, we think, is the juice that is capable of shifting the clock faster. We are really starting to understand how the timing system in the brain is wired together and found that the code used by VIP neurons is really key to setting our daily schedule," added Herzog.

The researchers want to learn more about how VIP neurons are stimulated to release VIP, which could reduce the impact of jet lag in humans who work different shifts or suffer from jet lag.

Sources: AAAS/Eurekalert! via Washington University, Neuron

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 27, 2018
AUG 27, 2018
Why Some Viruses are so Infectious
If you've seen a headline about norovirus on a cruise ship, you know some viruses are known for their ability to spread through a population....
SEP 03, 2018
Cell & Molecular Biology
SEP 03, 2018
Predicting the Impact of Gene Splicing Errors
Researchers are beginning to learn more about how gene mutations that affect RNA splicing are connected to health problems....
SEP 20, 2018
Genetics & Genomics
SEP 20, 2018
Liquid Phase Separation may Play a Role in Cancer
Not all liquids mix, like oil and water; the phenomenon is called liquid-liquid phase separation. We're learning more about its role in cells....
OCT 09, 2018
Drug Discovery
OCT 09, 2018
'Copper Antibiotic Peptide' Effective in Eradicating Tuberculosis
The bacterium responsible for Tuberculosis has found a way to avoid antibiotics by hiding inside the macrophages which are the specific immune cells that a...
OCT 13, 2018
Genetics & Genomics
OCT 13, 2018
A Better Way to Analyze Epigenetic Tags
This improved technology does not harm the DNA under analysis....
OCT 14, 2018
OCT 14, 2018
4-D Microscope Offers Look Into Early Development
A recent developed microscope has allowed scientists to hold a front-row view on the “drama of mammalian development”. Scientists can now see i...
Loading Comments...