SEP 28, 2018 4:32 PM PDT

New Holotomography Microscope for Imaging Live Cells in 3D

WRITTEN BY: Carmen Leitch

Biomedical research involves getting a close look at what’s happening inside of cells. Usually, that happens after cells are grown on a glass slide and then fixed in place. They can then be treated so that proteins or structures of interest are labeled with a color. But there are many limitations to that approach and scientists have been looking for better ways to see into cells that are still living. 

A new microscope has been created that may help investigators get a better look at living cells; it uses diffraction tomography. Tomography has been utilized in many different fields, but one that’s very common is X-rays, which capture cross-sections. In light diffraction, a beam gets spread out. The technique is outlined in the video.

It's what has been employed by the HT-1, Tomocube's new microscope that produces three-dimensional images that don’t require labeled cells and can be used on living models. 

These images can help researchers learn about the volume, surface area and deformability of a cell as well as giving them information about cytoplasmic density, and the shape of subcellular organelles. Not only will the information be in three dimensions it will also come from cells that have not been treated with fixatives or reagents.
 
“Unlike expensive atomic force, electron and laser-scanning light microscopes that require extensive sample preparation and/or labeling, the HT-1’s 3D imaging technology relies on the same fundamental property of light as traditional phase contrast microscopes,” noted Aubrey Lambert, Tomocube’s Chief Marketing Officer. 

“When light passes through any object, a phase shift is observable depending on its refractive index (RI). If this emergent light is viewed together with the original light, brightness changes can be seen dependent on the degree of phase shift. In the Tomocube microscope, a 3D image, or tomogram, is created from the RI measured at each three-dimensional location during a 360-degree rotation. A similar concept using X-rays and nuclear magnetic moments is found in CT and MRI scanners,” Lambert added.

 The new Tomocube HT-1 holotomography microscope, shown with its maglev-based antivibration TomoPlate and custom-made controllers for temperature and gas. / Credit: Tomocube

HT-1 relies on a digital micromirror device (DMD) optical light shaper, which uses hundreds of thousands of micromirrors placed on a rectangular array. Every single mirror can be tilted several degrees, and with DMD, there aren’t any moving parts interfering with the lightpath. The microscope is controlled by software created by Tomocube.

“Cellular analysis plays a crucial role in a wide variety of research and diagnostic activities in the life sciences although the information available is limited by current microscopy techniques. The Tomocube HT-1 overcomes many of these limitations and open new vistas for researchers and clinicians to understand, diagnose and treat human diseases,” said Lambert.

 

Source: Tomocube

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 09, 2020
Cell & Molecular Biology
Why Liver Gene Therapies Have Not Worked & How to Improve Them
SEP 09, 2020
Why Liver Gene Therapies Have Not Worked & How to Improve Them
Diseases that are caused by errors in a gene might be cured if we could correct those errors, or genetic mutations.
SEP 15, 2020
Cancer
Soy helps post-op treatment of bone cancer
SEP 15, 2020
Soy helps post-op treatment of bone cancer
New research published in the journal Acta Biomaterialia highlights the post-operative benefits of soy in treatment ...
OCT 05, 2020
Cell & Molecular Biology
Gaining Insight Into the Connection Between Depression and Stress
OCT 05, 2020
Gaining Insight Into the Connection Between Depression and Stress
Depression is a common mental illness, and stress is known to be an environmental influence that can increase the risk o ...
OCT 12, 2020
Cell & Molecular Biology
The Human Arm Appears to be Evolving Slightly
OCT 12, 2020
The Human Arm Appears to be Evolving Slightly
There are no humans that can perform feats of super-strength or control objects with their mind, but people are apparent ...
OCT 14, 2020
Genetics & Genomics
Robots Are Moving Developmental Biology Forward
OCT 14, 2020
Robots Are Moving Developmental Biology Forward
Researchers have created a robot that can analyze the effects of mutations that occur in portions of the genome that hel ...
NOV 05, 2020
Cardiology
Investigating Platelet-Derived Extracellular Vesicles in Blood Clotting
NOV 05, 2020
Investigating Platelet-Derived Extracellular Vesicles in Blood Clotting
In our bodies, there are millions of signals and packages being sent and received every second. In the past several deca ...
Loading Comments...