MAY 28, 2014 12:00 AM PDT

Unusual Physical Property of Stem Cell Nuclei

WRITTEN BY: Jen Ellis
Most materials will contract if stretched and will expand if squeezed. Think of the stretching of a rubber band and the way it narrows during the stretching process, and the way the circumference of a tennis ball bows outward when it is squeezed.

If a material shows the opposite effect, contracting when it is squeezed and expanding when it is stretched, it is said to be auxetic. (Think of a sponge).

Man-made items such as shock-absorbing and dampening materials are engineered to have this reaction, but aside from some natural sponges, this effect is fairly rare in nature. However, a research team from the University of Cambridge discovered this property in an unexpected place - in the nucleus of an embryonic stem cell. The team's work was published in a recent edition of Nature Materials.

The property is only observed during the transition period of embryonic stem cells, when they are in the process of evolving into a specific type of cell within the body such as muscle or heart tissue.

During the transition period, the researchers injected a dye into the cytoplasmic fluid around the nuclei and found that when the nucleus was stretched, the dye was absorbed - but without the stretching force, it was not. This suggests that porosity was increased by expansion of the nuclei caused during the stretching process, allowing dye to permeate into the structure.

Perhaps its auxetic properties play a role in the remarkable flexibility of embryonic stem cells to develop into any other type of cell in the body, but if so the mechanism remains to be seen. Physical forces and the surrounding environment within the body may play key roles, and further research into these mechanisms may assist in the understanding of certain disorders.

Outside of the human body, this research could lead to interesting material compositions. Understanding the mechanism of auxetism in the transitional stem cell could lead to development of new industrial materials.

Most auxetic materials have a high degree of order in their structure - a honeycomb would be a classic example. This structure allows for the distribution and dissipation of forces that are applied to the structure. However, some materials can produce this effect with a relatively random orientation, and the nuclei of transitional stem cells appear to be in that category.

Is this an evolutionary process or an inherent property of the transitional stem cell? If it has evolved, was the process originally more ordered, with the evolution providing needed structural changes?

Understanding the difference in the auxetism mechanisms between highly ordered and disordered systems could lead to technological advances, assuming the mechanism found in stem cells can be transferred to man-made materials in the outside world.

It could be the case that disordered or randomly oriented systems that have the same effect of auxetism can produce improved materials for shock absorption - imagine bulletproof vests as an example. We may find improvements in performance, cost, ease of manufacture - or all of those properties.
About the Author
You May Also Like
JUN 14, 2021
Coronavirus
COVID-19 May Cause Diabetes
JUN 14, 2021
COVID-19 May Cause Diabetes
Reporting in Cell Metabolism, an international team of researchers has suggested that COVID-19 has caused diabetes in so ...
JUN 30, 2021
Genetics & Genomics
A New Kind of Regulatory Element in the Genome
JUN 30, 2021
A New Kind of Regulatory Element in the Genome
The common, two-stranded helical structure of DNA was discovered over one hundred years ago. Many researchers would go o ...
JUL 04, 2021
Genetics & Genomics
New Insights Into the Mechanisms of Rett Syndrome
JUL 04, 2021
New Insights Into the Mechanisms of Rett Syndrome
Rett syndrome is a neurological disorder that mostly affects girls; affected individuals develop normally until they're ...
JUL 09, 2021
Cell & Molecular Biology
Wearable Tech for...Plants?
JUL 09, 2021
Wearable Tech for...Plants?
Researchers have developed a "wearable" patch to detect the gaseous substances plants emit when diseased or stressed,
JUL 18, 2021
Genetics & Genomics
Only 7% of the Human Genome or Less is Unique to Modern Humans
JUL 18, 2021
Only 7% of the Human Genome or Less is Unique to Modern Humans
Genetic tools have enabled scientists to assess the evolution of humans through DNA, and researchers have shown that mod ...
JUL 19, 2021
Cardiology
Immune Proteins & Blood Clots May be Connected to Psychosis Development
JUL 19, 2021
Immune Proteins & Blood Clots May be Connected to Psychosis Development
Researchers are pointing out the associations between blood clotting disruptions and the front line immune system, and t ...
Loading Comments...