NOV 27, 2018 6:03 PM PST

Why Screens can Interfere With Sleep

WRITTEN BY: Carmen Leitch

Most of us spend a lot of time looking at some type of screen, whether it’s a laptop, a phone, or another device. For some people, that time adds up to many hours, which is thought to be disruptive to sleep. Researchers at the Salk Institute have now discovered that specific cells in the eye can sense ambient light. These cells also help regulate our daily cycle, which is known as the circadian rhythm. When artificial light stimulates these cells long into the evening hours, the cells become confused, which can have a disruptive ripple effect on our physiology. This work has been published in Cell Reports, and could help researchers that are working on therapeutics for disorders including obesity, insulin resistance, cancer, and metabolic diseases, which have all been linked to problems with circadian rhythm.

From left: Salk scientists Ludovic Mure and Satchin Panda uncover how certain retinal cells respond to artificial illumination. / Credit: Salk Institute

"We are continuously exposed to artificial light, whether from screen time, spending the day indoors or staying awake late at night," said the senior author of the report, Salk Professor Satchin Panda. "This lifestyle causes disruptions to our circadian rhythms and has deleterious consequences on health."

The retina sits at the back of our eyes and is made up of layers of cells. One of those layers contains a small group of cells that are sensitive to light. When they’re exposed continuously to light, a protein called melanopsin is constantly produced in those cells, which sends information about light levels to the brain so it can control sleep, alertness, and consciousness. Melanopsin can suppress a hormone called melatonin, which regulates sleep, and can synchronize the internal clock after only ten minutes of light exposure.

Melanopsin-producing cells can rapidly respond to light, and work to reset our daily clocks on the basis of those light levels. "Compared to other light-sensing cells in the eye, melanopsin cells respond as long as the light lasts, or even a few seconds longer," noted the first author of the report, Ludovic Mure, staff scientist. "That's critical because our circadian clocks are designed to respond only to prolonged illumination."

For the study, the scientists used a mouse model to stimulate the production of melanopsin in the mouse retina. Some cells could sustain their response to light while other cells had become desensitized and stopped responding.

Arrestins are molecules that can halt the activity of some receptors. It had been suggested that arrestins can stop the light response after only seconds, but the researchers found instead that melanopsin needed arrestins to maintain their response to prolonged light.

When mice were engineered to lack either type of arrestin protein, the retina cells that generate melanopsin could not continue their response to sustained light. In the retina, arrestin was helping melanopsin to regenerate.

"Our study suggests the two arrestins accomplish regeneration of melanopsin in a peculiar way. One arrestin does its conventional job of arresting the response, and the other helps the melanopsin protein reload its retinal light-sensing co-factor. When these two steps are done in quick succession, the cell appears to respond continuously to light," explained Panda.

The researchers plan to continue this work and hope to learn how to manipulate melanopsin to treat insomnia and other problems with the internal clock.

 

Sources: AAAS/Eurekalert! Via Salk Institute, Cell Reports

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 09, 2019
Immunology
DEC 09, 2019
Strep Throat Bacteria "Hides" from the Immune System
Group A Streptococcus (GAS), the bacterial species famous for sore throat infections, have a secret weapon for circumventing the immune response to bacteri...
DEC 09, 2019
Microbiology
DEC 09, 2019
A Single-Celled Organism That Seems to Make Choices
A protist has been captured on video 'changing its mind.'...
JAN 07, 2020
Immunology
JAN 07, 2020
"Good" T Cells Can Go "Bad," But in the Case of Cancer, That's A Good Thing
T cells may be able to reach their full potential in the fight against cancer with a little nudge. In 2010, scientists first observed CD4+ T cells transiti...
JAN 19, 2020
Cell & Molecular Biology
JAN 19, 2020
Scientists Create Neuromuscular Organoids That Contract
This work is a breakthrough for the study of neuromuscular diseases including ALS, muscular dystrophy and multiple sclerosis....
JAN 28, 2020
Cell & Molecular Biology
JAN 28, 2020
A Rare Genetic Disorder is Effectively Treated With Modified Stem Cells
A clinical trial used stem cell gene therapy to treat a rare genetic disorder called X-CGD. Image credit: UCLA Broad Stem Cell Research Center/Nature Medicine...
FEB 25, 2020
Cell & Molecular Biology
FEB 25, 2020
Relieving Preeclampsia With an Antioxidant Found in Mushrooms
Preeclampsia usually arises after 20 weeks of pregnancy in women that typically have normal blood pressure. It can be fatal to the mother and baby if left untreated....
Loading Comments...