DEC 27, 2018 11:24 AM PST

Expanding Our Understanding of the Molecular Impact of Alcohol

WRITTEN BY: Carmen Leitch

New Year’s Eve, a holiday that’s often toasted with alcohol, is rapidly approaching. Many people will experience the intoxication that comes with imbibing alcohol. Scientists at Scripps Research Institute are learning more about the physiological mechanisms that underlie that feeling. Reporting in the Journal of Molecular Biology, they have identified molecules on the surface of nerve cells that are a crucial part of the intoxication process. 

Image credit: Pixabay

Fruit flies are a common molecular research model, and we know a lot about them, their genome, and how to manipulate them for research purposes. It’s been established, for one, that fruit flies get drunk on alcohol. They were used in this work. Led by Scott Hansen, Ph.D., an associate professor in the Department of Molecular Medicine, a team of investigators exposed fruit flies to ethanol to study how it exerted its impact.
 
The flies respond to alcohol in a way that parallels the effect in humans. "They [the flies] act just like people," Hansen explained. "They start losing coordination. They literally get drunk."

Alcohol can act like an anesthetic. It generates a buzzed feeling initially, and then a sedative effect kicks in, explained Hansen. The researchers want to know how that happens.

The researches knew about a process at work where anesthetics are concerned; they decided to look at how that anesthetic mechanism was impacted by alcohol. They began with an enzyme found on the membranes of nerve cells (neurons), called phospholipase D2 or PLD2, which connects ethanol molecules to fats in the membrane. The enzyme can act to catalyze several processes inside the neuron. It generates phosphatidylethanol (PEtOH), a fatty alcohol metabolite, which builds up and makes the neuron easier to fire, and creates hyperactive flies. 

"With hyperactivity you see the flies run around more, and this is what we equate to being buzzed," Hansen said.

The researchers genetically engineered flies that lacked the enzyme that generates the PEtOH metabolite. When that signal was lost from the flies, they stopped becoming hyperactive.

This research, said Hansen, is the first to demonstrate that this pathway is involved in alcohol sensitivity. More work will be necessary to determine whether the metabolite is also linked to the sluggishness of the flies after their initial buzz and if it’s part of feeling hungover. Hansen’s team is at work on these questions.

If we understand how alcohol is impacting the body on a molecular level, Hansen suggested that it might be possible to create an antidote to alcohol intoxication or a cure for a hangover. It will also have to be demonstrated that these mechanisms are the same in people. There are reasons to think it will, however.

"The fatty alcohol is known to linger in the brain for more than 16 hours making it a likely target," Hansen added. "Also, understanding this pathway could give insight as to why people use alcohol for pain management."

"It has definitely led to some different ways of thinking about alcohol intoxication at the molecular level," Hansen said. "Most scientists thought alcohol had a direct effect. Blocking the enzyme in flies shows that's not likely true."

Learn more about what drinking does to the body from the video.


Sources: AAAS/Eurekalert! via Scripps Research Institute, Journal of Molecular Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
FEB 16, 2020
Cell & Molecular Biology
FEB 16, 2020
Growing Cells on Scaffolding as an Alternative to Animal Models
Researchers may have just made it easier for investigators to switch to an engineered model and replace their animal colonies with electrospun synthetics....
FEB 18, 2020
Cell & Molecular Biology
FEB 18, 2020
How Too Much Fluoride Can Disrupt Tooth Enamel
You can have too much of a good thing....
FEB 23, 2020
Cell & Molecular Biology
FEB 23, 2020
A New Class of Bacterial Enzymes is Discovered
Bacterial enzymes can serve many processes, from breaking down pollutants and digesting foods to metabolizing drugs....
FEB 25, 2020
Genetics & Genomics
FEB 25, 2020
Improving Gene Therapy With Plant-Based Relatives of Cholesterol
Cholesterol analogs give nanoparticles a shape that helps them get where they need to go....
FEB 23, 2020
Cancer
FEB 23, 2020
Celular aging reexamined
New research published in Genes and Development has identified one of the mysteries of aging. According to scientists at Sanford Burnham Prebys Medical Dis...
MAR 04, 2020
Genetics & Genomics
MAR 04, 2020
DNA Fragments and Cartilage Recovered From 75-Million-Year-Old Dinosaur Bones
An international team of researchers has analyzed cartilage from a baby duckbilled dinosaur, and they have identified bits of preserved proteins and what seems to be chromosomes....
Loading Comments...