JAN 14, 2019 12:00 PM PST

Microscopy Advances Enable the Visualization of Cortical Neurons in Live Mice

WRITTEN BY: Carmen Leitch

For many years, clinicians have been using computed tomography (CT) scans and magnetic resonance imaging (MRI) to see inside the human body. Now scientists will be able to get a better look at cells in the brain, since a recently developed technology, three-photon microscopy, has been improved. Researchers at MIT were able to observe stimulated neurons in a live, adult mouse; in a first, they studied the layers of the visual cortex and the subplate layer below it. The findings have been reported in Nature Communications.

Image credit: Max Pixel

"By optimizing the optical design and other features for parameters for making measurements in the live brain, we were able to actually make novel discoveries that were not possible before," said co-corresponding author Mriganka Sur, Newton Professor of Neuroscience in the Picower Institute for Learning and Memory. "The concept has existed, but the question was how do you make it work.”

In this study, the researchers were able to detect patterns of activity in every layer of the visual cortex and subplate below as mice were shown images to stimulate neurons involved in their visual perception. The team showed that the technique they used did not damage or alter the cells they studied. Three-photon microscopy can deliver rapid light pulses without disturbing the cells, and the fluorescence that is emitted generates sharp images quickly.

"We were motivated to show what we could do with three-photon microscope technology for an animal in an awake condition so we could ask important questions of neuroscience," said postdoctoral fellow Murat Yildirim, a co-lead author of the study. "You could think you have the best microscope in the world, but until you ask those questions you don't know what results you are going to get."

SD rendering of a sequence of 450 lateral three-photon images acquired with 2-μm increment from the visual cortex (layer 1 on the left to the subplate on the right). Green color represents GCaMP6s signal, and magenta color represents label-free THG signal generated in the blood vessels and myelin fibers in the white matter. Scale bar, 100 μm. / Credit: Murat Yildirim et. al.

The team showed mice grating patterns moving in one of two directions in a dozen different orientations. As that happened, the three-photon scope enabled them to visualize the neurons in the visual cortex - more than one millimeter deep in the brain. The neurons had been engineered to glow when they were active. The team could also see other structures like blood vessels.

The work revealed that neurons in layer five of the visual cortex could respond to a broad range of pattern orientations instead of only a few specific ones. These neurons were more spontaneously active and had more connections to deeper brain regions than cells in other layers. In layer six, the neurons were more specified in their response and only reacted to certain orientations.

Surprising the researchers, the subplate contained neurons that were tuned to visual stimuli. It had been thought that these neurons were active for the most part during development. Technical challenges, the researchers noted, have prevented the study of these cells. Now, the team will be able to use their new tool to investigate further.


Sources: AAAS/Eurekalert! via Picower Institute at MIT, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 13, 2020
Cell & Molecular Biology
JAN 13, 2020
Disrupting Leukemia's Deadly Reliance on Vitamin B6
Acute Myeloid Leukemia is a cancer of the blood that starts in the bone marrow, where the stem cells that produce blood cells reside, and rapidly moves to the blood....
JAN 20, 2020
Neuroscience
JAN 20, 2020
Ovarian Cancer Protein Accelerates Alzheimer's Neurodegeneration
Around 21,000 people in the US are diagnosed with ovarian cancer every year, while an estimated 5.8 million Americans have Alzheimer’s. Now, research...
MAR 02, 2020
Genetics & Genomics
MAR 02, 2020
DNA Replication Discovery May Lead to New Cancer Treatments
Researchers have learned more about DNA replication during cell division, and their insights may help create new types of cancer therapeutics...
MAR 05, 2020
Microbiology
MAR 05, 2020
Researchers Learn How Gut Microbes Can Promote Heart Disease
The microbes in our gastrointestinal tract, collectively known as the gut microbiome, have a powerful impact on our health and well-being....
MAR 15, 2020
Genetics & Genomics
MAR 15, 2020
Insight Into Neuronal Growth and Memory Formation
Now scientists have learned more about the transport of mRNA in neurons, and the storage and formation of memories....
MAR 26, 2020
Cell & Molecular Biology
MAR 26, 2020
A Large Cavity is Discovered in a Tuberculosis Protein
Scientists have discovered something very unusual about a protein that is thought to be important to the development of tuberculosis....
Loading Comments...