JAN 24, 2019 12:11 PM PST

Scientists Use CRISPR Gene Editing in Mice Successfully

WRITTEN BY: Carmen Leitch

The gene-editing tool CRISPR/Cas9 was adapted from the bacterial immune system for use in cells growing in culture and in animal models that develop rapidly like zebrafish and insects. Using the tool in mammals like mice presented major challenges, however. For one thing, it takes a long time to produce several generations of mice, which is necessary for studying inherited genetic changes like the ones introduced by CRISPR. Now researchers at UC San Diego have found a way to make it work in a mouse model, and want to use it to edit multiple genes at the same time. Their research, reported in Nature and discussed in the video, creates a foundation on which other investigators can build, which is what’s happened with CRISPR techniques in other research models.

"Our motivation was to develop this as a tool for laboratory researchers to control the inheritance of multiple genes in mice," explained Cooper. "With further development we think it will be possible to make animal models of complex human genetic diseases, like arthritis and cancer, that are not currently possible."

For this work, the scientists inserted a genetic element called CopyCat into a gene that regulates fur color. If CopyCat impacts both copies of the fur color gene, black fur turns white - an obvious way to see if the genetic engineering attempt has been successful. 

Using a variety of approaches, the team led by UCSD Assistant Professor Kimberly Cooper showed that when CRISPR/Cas9 cuts the genome, the CopyCat element can move to repair that break. The genetic element could be easily added to an additional chromosome. The team found that 86 percent of offspring inherited the element, instead of 50 percent. This strategy worked if used in female mice during egg production, but not in males producing sperm. 

UC San Diego researchers used CRISPR/Cas9 to control genetic inheritance in mammals for the first time. / Credit: Cooper Lab, UC San Diego

The researchers are already using their technique to study the insertion of other traits and genes. "We've shown that we can convert one genotype from heterozygous to homozygous. Now we want to see if we can efficiently control the inheritance of three genes in an animal. If this can be implemented for multiple genes at once, it could revolutionize mouse genetics," said Cooper.

This work has the potential to be used to investigate a variety of questions, including complex human traits and diseases, among other things. "We are also interested in understanding the mechanisms of evolution," said Cooper. "For certain traits that have evolved over tens of millions of years, the number of genetic changes is greater than we can currently assemble in mice to understand what caused bat fingers to grow into a wing, for example. So we want to make lots of these active genetic tools to understand the origins of mammalian diversity."

 

Sources: AAAS/Eurekalert! Via UCSD, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 11, 2020
Cancer
Targeting Senescence in the Peripheral Nervous System to Fight Toxicity
SEP 11, 2020
Targeting Senescence in the Peripheral Nervous System to Fight Toxicity
Chemotherapy is a life-saving discovery for cancer patients. One of its biggest drawbacks is the toxicity that comes wit ...
SEP 29, 2020
Cell & Molecular Biology
What We Call Parkinson's Disease May Actually be Two Distinct Disorders
SEP 29, 2020
What We Call Parkinson's Disease May Actually be Two Distinct Disorders
Researchers have used imaging tools to show that Parkinson's disease may actually be two different diseases, one that st ...
OCT 22, 2020
Cell & Molecular Biology
How a Gene Variant Raises the Risk of Multiple Sclerosis
OCT 22, 2020
How a Gene Variant Raises the Risk of Multiple Sclerosis
Now that sequencing the whole human genome is easier, faster, and cheaper than it used to be, scientists have been able ...
OCT 29, 2020
Genetics & Genomics
Severe Genomic Damage in Human Embryos Treated With CRISPR
OCT 29, 2020
Severe Genomic Damage in Human Embryos Treated With CRISPR
The CRISPR-Cas9 genomic editing system holds great promise for treating genetic errors that cause human disease. But we ...
NOV 01, 2020
Plants & Animals
Plant Hormone Auxin Helps Orient Growth of Plant Veins
NOV 01, 2020
Plant Hormone Auxin Helps Orient Growth of Plant Veins
There are veins in plants that move nutrients and other important molecules around. These veins have to be carefully org ...
NOV 27, 2020
Genetics & Genomics
Gravity Affects Gene Expression
NOV 27, 2020
Gravity Affects Gene Expression
If people are going to explore deep space, we should learn more about the effects that such an environment would potenti ...
Loading Comments...