JAN 31, 2019 5:48 PM PST

Breakthrough Imaging Tool Shows How Pancreatic Cancer Forms

WRITTEN BY: Carmen Leitch

Scientists have learned that pancreatic cancer can form in two different ways, solving long-standing questions. They developed an imaging tool that allowed them to see the development of cancer in 3D. It will enable researchers to learn more about tissues harvested from cancer patients and may help lead to improvements in treatment. The work has been reported in Nature.

"To investigate the origins of pancreatic cancer, we spent six years developing a new method to analyze cancer biopsies in three dimensions," said the co-lead author of the study Dr. Hendrik Messal of the Francis Crick Institute. 

The pancreas uses a network of ducts to connect to other organs in the digestive system, and before this work, researchers could only look at slices of ductal cancers. Those slices were often hard to interpret. In this study, the team learned that two types of cancer forms in ductal cells. One type produces ‘endophytic’ tumors, which grow towards the ducts; the other kind is ‘exophytic’ that grow outwards. The team used 3D imaging and computer modeling to learn what gave them this directionality.

“This technique revealed that cancers develop in the duct walls and either grow inwards or outwards depending on the size of the duct. This explains the mysterious shape differences that we've been seeing in 2D slices for decades,” noted Messal.

The image shows cancer growing inside the pancreatic duct of a mouse. It was obtained using a new technique to study 3D tissue samples, revealing that cancers can begin as 'endophytic' tumours which grow into the ducts (shown here) or 'exophytic' tumours growing outwards. / Credit: Hendrik Massal, Francis Crick Institute

"We made a simulation of the ducts, describing individual cell geometry to understand tissue shape," explained co-lead study author and biophysicist Dr. Silvanus Alt. "The model and experimental results both confirmed that cancer grew outwards when the diameter of the duct was less than approximately twenty micrometers, around a fiftieth of a millimeter.”

The researchers used their technique to asses other organs and determined that cancers growing in lung airways and liver ducts also grow this way. 

"Both the data and our models indicate that the two different mechanisms of tumor growth are purely down to the innate physics of the system," explained Dr. Guillaume Salbreux. "Like most cancers, ductal pancreatic cancer starts with a single defective cell that starts dividing. We found that very quickly when there are only a few cells; the tumor has already started to grow either inwards or outwards depending on duct diameter. Defining this fundamental process will help us to better understand how cancer grows in many places across the body."

“This technological breakthrough has the potential to unlock many unanswered questions of great importance in how we understand and treat pancreatic cancer. It's crucial we better grasp how these cancers behave from the earliest stages, to help develop treatments for a disease where survival rates have remained stubbornly low,” added Professor Andrew Biankin, a pancreatic cancer expert with Cancer Research UK.


Sources: AAAS/Eurekalert! Via Crick Institute, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 16, 2020
Genetics & Genomics
MAR 16, 2020
How the Genetic Material in Sperm is Unpacked During Fertilization
The genetic material from a sperm and an egg merges to form a new human genome, and now we know more details about the p ...
MAR 16, 2020
Genetics & Genomics
MAR 16, 2020
How To: Recombinant Protein Construct Design
Creating recombinant proteins has become much easier over the past few decades. However, those with the skills to do des ...
MAR 17, 2020
Genetics & Genomics
MAR 17, 2020
Targeting RNA With CRISPR
Researchers screened thousands of target molecules to find the most effective targets, and have made their data openly a ...
APR 06, 2020
Cancer
APR 06, 2020
A New Lead in the Treatment of Hepatocellular Carcinomas
  Hepatocellular carcinoma, or HCC, is a type of liver cancer, and the third most prevalent cancer-caused death in ...
APR 23, 2020
Cardiology
APR 23, 2020
Arteries Respond in Different Ways in Females and Males
Exploring Arterial Smooth Muscle Kv7 Potassium Channel Function using Patch Clamp Electrophysiology and Pressure Myograp ...
MAY 27, 2020
Cell & Molecular Biology
MAY 27, 2020
A Deeper Understanding of How Some Bacterial Toxins Interact With Cells
The surfaces of cells are decorated with receptors, and the interactions between receptors and their binding partners ar ...
Loading Comments...