APR 22, 2019 4:56 AM PDT

Researchers Use Patient Cells to 3D Print a Heart

WRITTEN BY: Carmen Leitch

When 3D printing was first developed, only very simple structures could be created from basic materials. Eventually, scientists created ways to print materials that would be compatible with human biology, and they set out to print complex structures. One ultimate goal, which once seemed very far off, would be to generate organs that could be printed on-demand for use in the clinic. Now investigators at Tel Aviv University have made a major advance in that direction. In a first, they 3D printed a vascularized heart using biological materials and cells from a patient. Their work has been reported in Advanced Science.

While printing simple structures is straightforward enough, adding blood vessels that work is a huge breakthrough. This organ is the first with those vessels. "This is the first time anyone anywhere has successfully engineered and printed an entire heart replete with cells, blood vessels, ventricles, and chambers," said the leader of the work Professor Tal Dvir of TAU's School of Molecular Cell Biology and Biotechnology, Department of Materials Science and Engineering, Center for Nanoscience and Nanotechnology and Sagol Center for Regenerative Biotechnology.

The leading cause of death for American men and women is heart disease, and a heart transplant is the only option for people suffering from end-stage heart failure. There aren’t enough heart donors, and of course, a new heart only comes along when someone has died. Finding a way to get new hearts would be an incredible way to help many people.

In this study, scientists took a fatty tissue sample from patients and harvested the cells from it. The cells were then genetically reprogrammed into pluripotent stem cells. Molecules like collagen and glycoproteins were added to generate a hydrogel, which was used as a printer ‘ink.’ The cells in the hydrogel could be specialized into patient-specific cardiac or endothelial cells to make cardiac patches or eventually an entire heart, compatible with the patient's immune system.

A 3D-printed, small-scaled human heart engineered from the patient's own materials and cells. / Credit: Advanced Science. © 2019 The Authors.

"This heart is made from human cells and patient-specific biological materials. In our process these materials serve as the bio-inks, substances made of sugars and proteins that can be used for 3D printing of complex tissue models," said Dvir. "People have managed to 3D-print the structure of a heart in the past, but not with cells or with blood vessels. Our results demonstrate the potential of our approach for engineering personalized tissue and organ replacement in the future."

This work is still in the preliminary stages, the researchers noted. "At this stage, our 3D heart is small, the size of a rabbit's heart," explained Dvir. "But larger human hearts require the same technology."

Dvir noted that if engineered tissues and organs are to be successful, they should be tailored to the patient.

"The biocompatibility of engineered materials is crucial to eliminating the risk of implant rejection, which jeopardizes the success of such treatments," said Dvir. "Ideally, the biomaterial should possess the same biochemical, mechanical and topographical properties of the patient's own tissues. Here, we can report a simple approach to 3D-printed, thick, vascularized, and perfusable cardiac tissues that completely match the immunological, cellular, biochemical and anatomical properties of the patient."

This work continues; the scientists are not trying to coax printed hearts that are cultured in the lab “to behave" as hearts do. Once that’s working, they want to test the printed hearts in an animal model.

"We need to develop the printed heart further," said Dvir. "The cells need to form a pumping ability; they can currently contract, but we need them to work together. Our hope is that we will succeed and prove our method's efficacy and usefulness. Maybe, in ten years, there will be organ printers in the finest hospitals around the world, and these procedures will be conducted routinely."


Sources: AAAS/Eurekalert! via American Friends of Tel Aviv University, Advanced Science

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUL 29, 2021
Genetics & Genomics
Can Cats Help Us Learn More About Genomic Dark Matter?
JUL 29, 2021
Can Cats Help Us Learn More About Genomic Dark Matter?
Cats have been a part of human society for thousands of years, and now scientists are suggesting that they could help pr ...
AUG 05, 2021
Clinical & Molecular DX
Gene Markers in Mothers Point to the Risk of Preterm Birth
AUG 05, 2021
Gene Markers in Mothers Point to the Risk of Preterm Birth
Preterm births—when the baby is born fewer than 37 weeks gestational age—are very common. Experts estimate o ...
AUG 08, 2021
Cell & Molecular Biology
How Stress Can Impact Gene Expression in the Brain
AUG 08, 2021
How Stress Can Impact Gene Expression in the Brain
University of Bristol researchers have learned more about how chronic stress may be linked to health problems, both phys ...
AUG 13, 2021
Genetics & Genomics
Understanding Why a Skull Suture May Close Too Soon
AUG 13, 2021
Understanding Why a Skull Suture May Close Too Soon
There are 22 bones that compose the human skull. These bones are like plates that join together at flexible joints calle ...
SEP 07, 2021
Microbiology
Viral Ancestor of SARS-CoV May Date Back 22,000 Years
SEP 07, 2021
Viral Ancestor of SARS-CoV May Date Back 22,000 Years
The world has rapidly become familiar with sarbecoviruses, two of which jumped to humans in recent years. The first was ...
SEP 11, 2021
Genetics & Genomics
New NIH Consortium Aims to Understand the Impact of Genetic Variants
SEP 11, 2021
New NIH Consortium Aims to Understand the Impact of Genetic Variants
Scientists sequenced most of the human genome abut two decades ago. It took many years to complete the project because o ...
Loading Comments...