MAY 17, 2019 5:41 PM PDT

Bioengineered Microbes That are Cellular Speedometers

WRITTEN BY: Carmen Leitch

Researchers at Princeton have found that a type of bacterial cell can detect how fast movement is happening around them; they can sense the speed of flow. Those bacteria, Pseudomonas aeruginosa, are pathogens that are found virtually everywhere. They are often surrounded by moving liquids, like a stream outdoors, or the human bloodstream. The Centers for Disease Control and Prevention considers them a threat; they cause around 50,000 infections in people every year. In this work, reported in Nature Microbiology, they bioengineered as a kind of cellular speedometer. The scientists are hopeful that this work will provide new insight into how microbes benefit from this understanding of their environment and spur new avenues of research. 

A digitally-colorized SEM image of rod-shaped Pseudomonas aeruginosa bacteria. Smaller, purple-colored cocci bacteria are also in this view./ Credit: CDC/ Janice Haney Carr

“We have engineered bacteria to be speedometers,” said the senior author of the work, Zemer Gitai, Princeton’s Edwin Grant Conklin Professor of Biology. “There’s an application here: We can actually use these bacteria as flow sensors. If you wanted to know the speed of something in real time, we can tell you.”

“What we found is that not only do Pseudomonas encounter flow but that they actually can sense and respond to that flow, added Gitai. “That’s a big deal. If they’re in flow, they can change their ‘behavior,’ if you will, based on feeling they’re in flow.”

In this work, the researchers determined that the expression of some bacterial genes they called fro (for flow-regulated operon) can depend on how fast fluids are moving around the bacterium. 

“Fro’s response is not just an on-off switch; it’s actually tuned to the speed,” said co-lead study author Joseph Sanfilippo, a postdoctoral research associate. “It’s more like a dimmer switch than a light switch.”

The researchers linked fro to a fluorescence gene so they could see when it was active. As the speed of flow got faster, the glow got brighter. They could visualize how Pseudomonas was responding to different speeds. “They turn out to perfectly coincide with the range of speeds of fluids that are known in the bloodstream and the urinary tract,” noted Gitai.

The scientists are hopeful that this work will open up new avenues of exploration in microbiology.

“Other researchers have found that different bacteria can respond to fluid flow, and they’ve effectively assumed that it was the force. We are launching a mini-field here,” said Gitai. “Thinking about how bacteria live in flow is a completely under-explored area. We’d love for people to look at this with other bacteria. And as we said, there’s been a huge assumption in mammalian studies that everything is force-dependent — we’d love for people to read our paper and then go back and revisit some of those assumptions and change the viscosity in their systems.”

Learn more about P. aueruginosa from the video.


Sources: AAAS/Eurekalert! via Princeton University, Nature Microbiology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 13, 2020
Cell & Molecular Biology
JAN 13, 2020
Disrupting Leukemia's Deadly Reliance on Vitamin B6
Acute Myeloid Leukemia is a cancer of the blood that starts in the bone marrow, where the stem cells that produce blood cells reside, and rapidly moves to the blood....
FEB 01, 2020
Cell & Molecular Biology
FEB 01, 2020
Immunity in the Gut Ramps Up Around Mealtimes
Scientists have found that our immune system benefits when we eat regular meals....
FEB 17, 2020
Cell & Molecular Biology
FEB 17, 2020
Scientists Learn Why Some Body Clocks Are Too Short
Some individuals are morning people to the extreme. Some genetic mutations give the body clock a 20 instead of 24-hour cycle....
FEB 23, 2020
Microbiology
FEB 23, 2020
Using Cranberries and Citrus to Remove Viruses From Food
Noroviruses can contaminate fresh produce and in developed nations, they are the most common cause of gastroenteritis....
MAR 03, 2020
Cancer
MAR 03, 2020
New technique maps tissue development and tumors
Research published recently in the Proceedings of the National Academy of Sciences details the development of a new technique that is capable of mappi...
MAR 18, 2020
Genetics & Genomics
MAR 18, 2020
Finding a Treatment for Fetal Alcohol Spectrum Disorder
When developing fetuses are exposed to any amount of alcohol, they are at risk for a variety of irreversible birth defects....
Loading Comments...