MAY 20, 2019 05:00 PM PDT

Understanding How Cell Size is Controlled

WRITTEN BY: Carmen Leitch

Cell size can fluctuate because of biological processes, but a population of cells generally keeps their individual sizes to a standard. So how do cells control their size? Scientists at the University of California San Diego (UCSD) are making progress on answering this question. The team, led by UCSD biophysicist Suckjoon Jun, established that bacterial strains will generally keep cell size homeostatic, around the same size, regardless of how big they were when they started out. The researchers found that a process called ‘the adder’ guides the additive growth of cells from their birth to the point of division. Bacteria and yeast cells add roughly the same volume during their cell cycle.

These are E. coli cells expressing fluorescent fusion proteins of the replisome and division ring in two colors./ Credit: Jun Lab, UC San Diego

Reporting in Current Biology, Jun, lead study authors  Fangwei Si and Guillaume Le Treut, and colleagues have now learned more about the mechanisms of the adder. The researchers used two microbes, Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) to find that a cell needs to generate the right amount of proteins it will need for division, and the steady synthesis of those proteins as it elongates, as the cell grows to its typical size during the adder process.

"It's a very robust mechanism because each cell is guaranteed to reach its target cell size whether it is born large or small," said Jun, an associate professor in the Division of Biological Science's Section of Molecular Biology and the Division of Physical Sciences' Department of Physics. "The bottom line is that we found the adder is exclusively determined by some key proteins involved in cell division."

While two microbes were used for this work, the researchers believe that their findings apply to many types of cells across life forms. There are exceptions among eukaryotic cells, the researchers noted.

"Cell size homeostasis is a fundamental biological question, and to our knowledge, this is the first time we finally understand its mechanistic origin," said Jun. "We would not have been able to solve this with pure physics or pure biology. It was a very multidisciplinary approach." The research team was made up of engineers, biologists and physicists, who used a variety of experimental methods in their study, noted Jun.

The work continues. The scientists want to follow up on these processes in cancer cells and yeast to see how they work in those models. 

This video above shows periodic production of green fluorescent-fusion division proteins. The adder principle is illustrated in the video below.


Sources: AAAS/Eurekalert! via UCSD, Current Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 18, 2019
Microbiology
JUN 18, 2019
Probiotics Shown to Evolve in the Guts of Mice
Probiotics are easily available and have been promoted to consumers. It seems that they may be able to change once ingested....
JUN 18, 2019
Genetics & Genomics
JUN 18, 2019
Learning More About the Genetic Basis of Schizophrenia
Researchers have created an atlas of genes related to schizophrenia, which could help open up new treatment avenues....
JUN 18, 2019
Genetics & Genomics
JUN 18, 2019
Structural Biology Research Shows how Transcription Errors can Lead to Disease
The relationship between the genome of an organism and its physical characteristics can be challenging to understand. New work can reveal more....
JUN 18, 2019
Cell & Molecular Biology
JUN 18, 2019
Why Sleep is Good for Us
Animals spend a lot of their lifetime asleep, and scientists have sought to understand the physiological purpose of all that spent time....
JUN 18, 2019
Cell & Molecular Biology
JUN 18, 2019
A Visualization of Protein Translation Reveals Surprising Complexity
The genome contains all of the instructions a cell needs to build an organism, and we thought we knew how that worked....
JUN 18, 2019
Genetics & Genomics
JUN 18, 2019
CRISPR 2.0: Using Transposons to Improve and Expand CRISPR Application
Source: Science CRISPR-cas9, commonly referred to simply as CRISPR, is a bacterial immune system that was first used as a gene-editing tool in 2012. ...
Loading Comments...