JUL 08, 2019 8:52 PM PDT

Fat Cells in Different Parts of the Body are not Alike

WRITTEN BY: Carmen Leitch

Not all fat is the same. Researchers are learning more about how fat stored in different parts of the body can have different impacts on health. They compared fat cells taken from under the skin with fat cells from the abdomen, since abdominal fat is known to be associated with health problems and skin fat is not. They found that chemical tags added to the genome that can impact gene expression - the epigenome of these types of fat cells is different. The work has been published in Scientific Reports.

Image credit: Public Domain Pictures

"Our findings tell us that a cells' epigenome - the secondary code that controls how genes are read - can give us significant insight into how fat cells develop," explained the co-senior study author Professor Susan Clark, Genomics Research Director at the Garvan Institute. "The study gives us a completely new look at the underlying factors that contribute to the development of cells that can present significant health risks."

Abdominal fat, also known as visceral adipose tissue, has been linked to a variety of disorders including metabolic disease, insulin resistance, increased mortality, and several kinds of cancer. This fat releases hormones and may play a major role in disease development. Subcutaneous fat is located underneath the skin, functioning primarily to store energy, and is generally benign; it has not been connected to disease.



"It has been unclear why fat cells, which appear so similar, are associated with such different health outcomes," said study author Professor Katherine Samaras, Head of the Clinical Obesity, Nutrition and Adipose Biology lab at Garvan and endocrinologist at St. Vincent's Hospital Sydney. "Now we start to understand that the different fat cells are wired differently right from the start."

In this work, three participants donated samples of visceral and subcutaneous fat. The researchers were able to look at gene expression in the fat, as well as the epigenome. The scientists generated a genomic map from their data, and identified various genetic differences. They found that the differences start early on in the development of a cell; many of the most striking changes were in the methylation (a common epigenetic tag) of transcription factors, which control the expression of other genes, and developmental genes. The researchers hypothesized that precursors to the fat cells contain these differences and pass them down. Fat cells may, therefore, be hard-wired to be harmful or benign.



"When compared with other cell types in the body, visceral and subcutaneous fat cells are very similar to each other in their function," added lead study author Dr. Stephen Bradford. "Our analysis revealed epigenetic differences that may control different genes being turned on in subcutaneous and visceral fat cells that could contribute to their different properties and health effects."

"This comprehensive study demonstrated that the epigenome can provide an unprecedented view into the differences of cells that seem apparently very similar," said the co-senior author Dr. Peter Molloy of the CSIRO. "We believe that such analyses will provide us with further crucial insight not only into the development of fat, but also for other cell types in future."


Sources: AAAS/Eurekalert! Via Garvan Institute of Medicine, Scientific Reports

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 25, 2020
Cell & Molecular Biology
Researchers Take Organoids a Step Further
SEP 25, 2020
Researchers Take Organoids a Step Further
The human body is made of many different kinds of cells, which can often be cultured in a lab and studied. However, thos ...
OCT 04, 2020
Cell & Molecular Biology
Why the Effects of a Drug Depend on Who Takes It
OCT 04, 2020
Why the Effects of a Drug Depend on Who Takes It
Many drugs can have a wide range of impacts on the patients that take them; doctors often have to adjust a person's dosa ...
OCT 19, 2020
Plants & Animals
Genetically Engineered Foods Could Alleviate Nutritional Deficiencies
OCT 19, 2020
Genetically Engineered Foods Could Alleviate Nutritional Deficiencies
There are over two billion people around the world that don't get the recommended levels of minerals and vitamins in ...
NOV 13, 2020
Cell & Molecular Biology
Astrocytes are Star Players in the Brain
NOV 13, 2020
Astrocytes are Star Players in the Brain
As neurons fire, they enable us to think and move. They signal to one another where they meet at synapses, and at chemic ...
NOV 14, 2020
Microbiology
The Structure of a Bacteriophage DNA Tube is Revealed
NOV 14, 2020
The Structure of a Bacteriophage DNA Tube is Revealed
Some viruses only infect bacteria; they care called bacteriophages or phages for short. As antibiotic-resistant bacteria ...
NOV 16, 2020
Genetics & Genomics
Hidden Genes in the SARS-CoV-2 Genome
NOV 16, 2020
Hidden Genes in the SARS-CoV-2 Genome
It's essential for organisms to use their genomes to make proteins, and the processes of transcription and translation a ...
Loading Comments...