JUL 22, 2019 1:49 PM PDT

The Nucleolus Plays a Role in Protein Quality Control

WRITTEN BY: Carmen Leitch

Eukaryotic cells have specialized structures that complete specific tasks - organelles. One of those organelles is the nucleolus, which is known to generate subunits of another organelle, the ribosome. Now researchers have found that the nucleolus also checks on the quality of proteins. Work reported in Science indicates that the nucleolus can help stop harmful proteins from accumulating.

Learn the difference between the nucleus and the nucleolus from the video.

Proteins are composed of strings of amino acids that are folded into a three-dimensional structure. A cell under stress will often fold proteins the wrong way, which can cause serious harm; the protein may not perform some critical function, or it may have some other negative impact. Misfolded proteins also clump together, which is a feature of some neurodegenerative conditions, like Parkinson’s or Alzheimer’s disease.

Scientists have known about the nucleolus since the 1830s, and in the 1960s, had determined that portions of the ribosome are made there. Proteins called chaperones were also known to migrate to the nucleolus sometimes. This new research has indicated that the chaperones that move to the nucleolus are also linked to proteins that are sensitive to stress.

Previous work by the team of Franz-Ulrich Hartl of the Max Planck Institute (MPI) for Biochemistry has shown that chaperones are involved in protein quality control, and are necessary for proteins to be folded correctly. This work has shown that when proteins are improperly folded, the chaperones can guide them to the nucleolus.

Image credit: Pixabay

The researchers fused an enzyme to a glowing protein, so they could observe it under a microscope to see how it folded. "We have been using the enzyme luciferase as a model protein for many years in order to investigate the mechanisms of protein folding," explained corresponding study author Mark Hipp of the MPI. "We were able to show that stressing cells by heating them to 43°C results in the transport of the misfolded luciferase protein, together with the chaperones, into the nucleolus."

To reveal the mechanisms underlying this process, the team turned to Ralf Jungmann, a professor of Experimental Physics at Ludwig Maximilian University of Munich (LMU) and Jürgen Cox of MPI. They found that if luciferase wasn’t folded correctly, it ended up in the nucleolus in a kind of suspended state, only allowed by the biophysical environment of the organelle. "In the nucleolus, misfolded proteins were kept in a liquid-like state instead of aggregating," explained study first author Frédéric Frottin.

"Proteins that usually tend to aggregate are stored in a less dangerous form during stress, which protects cells from damage. Once the cell has had time to recover, the proteins can be refolded and released from the nucleolus," added Frottin.

After that, the cell can deal with the protein in several ways and can repair or destroy it. If the cell is under stress for prolonged periods, however, the protection won’t last. "This is a new mechanism that maintains the integrity of the cell," Hipp said. As integrity breaks down, it may contribute to the development of disease or aging.

Professor Hartl's work on chaperones is discussed in the video.


Sources: Phys.org via Ludwig Maximilian University of Munich, Science

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 19, 2021
Cell & Molecular Biology
Mouse Fathers Passed Immunity Onto Offpsring After Infection
OCT 19, 2021
Mouse Fathers Passed Immunity Onto Offpsring After Infection
Parents pass their genes on to their children. But they can pass down other things too with epigenetic marks, chemical t ...
NOV 11, 2021
Microbiology
Is Coronavirus Spillover More Common Than We Knew?
NOV 11, 2021
Is Coronavirus Spillover More Common Than We Knew?
While many people are most familiar with the coronavirus that causes COVID-19, which is called SARS-CoV-2, there are man ...
NOV 17, 2021
Cancer
Turkey, Tryptophan, and Cancer
NOV 17, 2021
Turkey, Tryptophan, and Cancer
As many people start to plan their Thanksgiving dinners, there will inevitably be a lot of talk about the turkey.  ...
NOV 26, 2021
Cell & Molecular Biology
Twin Study Reveals Epigenetic Links to Type 2 Diabetes
NOV 26, 2021
Twin Study Reveals Epigenetic Links to Type 2 Diabetes
Identical twins carry the same genome in their cells, which makes them powerful subjects in the study of human disease. ...
NOV 29, 2021
Cell & Molecular Biology
Researchers Discover a New Type of Cell in the Retina
NOV 29, 2021
Researchers Discover a New Type of Cell in the Retina
Many types of cells in the eye were identified 100 years ago. But researchers found something new there.
DEC 05, 2021
Cell & Molecular Biology
New Cell Imaging Method Sees Inside & Outside of Cell Simultaneously
DEC 05, 2021
New Cell Imaging Method Sees Inside & Outside of Cell Simultaneously
EPFL researchers have develped a new tool for viewing live cells in unprecedented detail.
Loading Comments...