JAN 04, 2020 10:44 AM PST

Shared Mechanisms of Mitochondrial Division Highlight Evolutionary Links

WRITTEN BY: Carmen Leitch

The cells of most living creatures contain organelles, tiny structures that are bound by a membrane and perform critical cellular functions. One organelle, the mitochondria, is known as the cell's powerhouse. It is an essential and ancient structure that even carries its own DNA: the only protein-coding DNA that is separate from the genomic DNA in the nucleus of the cell. It has been theorized that the mitochondrion may be derived from simpler cells that have no membrane-bound organelles, called prokaryotes, that got into a larger cell and gave rise to more complex cells, eukaryotes (a concept called symbiogenesis). Eukaryotic cells make up virtually every kind of organism except for bacteria and archaea. Mitochondrial division might, therefore, be very similar among most organisms. Reporting in Communications Biology, researchers have now gained insight into a common mechanism in mitochondrial division.

"Mitochondria are important to cellular processes, as they supply energy for vital activities. It is established that cell division is accompanied by mitochondrial division; however, many points regarding its molecular mechanism are unclear," noted research leader Professor Sachihiro Matsunaga of  Tokyo University of Science. Matsunaga's team used a type of red alga to learn more. These simple organisms carry only one mitochondrion.

The researchers zeroed on an enzyme called Aurora kinase, which activates other molecules by adding a phosphate group (phosphorylating) them. Aurora kinase is known to play a role in cell division in red algae. The scientists found that the enzyme phosphorylates a protein called dynamin. Dynamin functions in mitochondrial division.

"When we looked for proteins phosphorylated by Aurora kinase, we were surprised to find dynamin, a protein that constricts mitochondria and promotes mitochondrial division," noted Matsunaga.

The researchers now had more information about these mechanisms in red algae, and they wanted to see if the results held true in another organism. They tested whether the human Aurora kinase also phosphorylates human dynamin in a cell culture model, and found that it did. This finding was not replicated in other models, however.

This exciting new research describes how mitochondrial replication is similar in the simplest to most complex organisms, shedding light on its origin. / Credit: Tokyo University of Science

"Using biochemical in vitro assays, we showed that Aurora kinase phosphorylates dynamin in human cells. In other words, it was found that the mechanism by which Aurora kinase phosphorylates dynamin in the mitochondrion is preserved from primitive algae to humans," explained Matsunaga.

"Since the mitochondrial fission system found in primitive algae may be preserved in all living organisms including humans, the development of this method can make it easier to manipulate cellular activities of various organisms, as and when required," he added.


Sources: AAAS/Eurekalert! via Tokyo University of Science, Communications Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 16, 2019
Cell & Molecular Biology
DEC 16, 2019
When Migrating, Cancer Cells Choose the Path of Least Resistance
Cancer becomes most deadly when it has metastasized - when cancerous cells move away from the site where cancer started growing....
JAN 13, 2020
Cell & Molecular Biology
JAN 13, 2020
Disrupting Leukemia's Deadly Reliance on Vitamin B6
Acute Myeloid Leukemia is a cancer of the blood that starts in the bone marrow, where the stem cells that produce blood cells reside, and rapidly moves to the blood....
FEB 04, 2020
Immunology
FEB 04, 2020
The Gut Deploys Protective Mechanisms in Coordination with Your Mealtime Habits
At mealtime, every mouthful of food contains a possible risk of incoming pathogens to the digestive system. The gut takes protective measures to account fo...
FEB 05, 2020
Genetics & Genomics
FEB 05, 2020
'Chromosome Shattering' is Common Across Cancer Types
A type of genetic mutation called chromothripsis was discovered a few years ago in chronic lymphocytic leukemia....
FEB 09, 2020
Cell & Molecular Biology
FEB 09, 2020
Switching Inflammation Off at the Molecular Level
While chronic inflammation is a natural result of getting old, experiencing stress, and toxin exposure, it's been theorized to be the basis for many chronic diseases....
FEB 13, 2020
Cell & Molecular Biology
FEB 13, 2020
Study of Early-Onset Parkinson's Reveals Potential Therapeutic
Around 500,000 Americans are diagnosed with Parkinson's disease every year, and the rate of the disease is rising....
Loading Comments...