JAN 04, 2020 10:44 AM PST

Shared Mechanisms of Mitochondrial Division Highlight Evolutionary Links

WRITTEN BY: Carmen Leitch

The cells of most living creatures contain organelles, tiny structures that are bound by a membrane and perform critical cellular functions. One organelle, the mitochondria, is known as the cell's powerhouse. It is an essential and ancient structure that even carries its own DNA: the only protein-coding DNA that is separate from the genomic DNA in the nucleus of the cell. It has been theorized that the mitochondrion may be derived from simpler cells that have no membrane-bound organelles, called prokaryotes, that got into a larger cell and gave rise to more complex cells, eukaryotes (a concept called symbiogenesis). Eukaryotic cells make up virtually every kind of organism except for bacteria and archaea. Mitochondrial division might, therefore, be very similar among most organisms. Reporting in Communications Biology, researchers have now gained insight into a common mechanism in mitochondrial division.

"Mitochondria are important to cellular processes, as they supply energy for vital activities. It is established that cell division is accompanied by mitochondrial division; however, many points regarding its molecular mechanism are unclear," noted research leader Professor Sachihiro Matsunaga of  Tokyo University of Science. Matsunaga's team used a type of red alga to learn more. These simple organisms carry only one mitochondrion.

The researchers zeroed on an enzyme called Aurora kinase, which activates other molecules by adding a phosphate group (phosphorylating) them. Aurora kinase is known to play a role in cell division in red algae. The scientists found that the enzyme phosphorylates a protein called dynamin. Dynamin functions in mitochondrial division.

"When we looked for proteins phosphorylated by Aurora kinase, we were surprised to find dynamin, a protein that constricts mitochondria and promotes mitochondrial division," noted Matsunaga.

The researchers now had more information about these mechanisms in red algae, and they wanted to see if the results held true in another organism. They tested whether the human Aurora kinase also phosphorylates human dynamin in a cell culture model, and found that it did. This finding was not replicated in other models, however.

This exciting new research describes how mitochondrial replication is similar in the simplest to most complex organisms, shedding light on its origin. / Credit: Tokyo University of Science

"Using biochemical in vitro assays, we showed that Aurora kinase phosphorylates dynamin in human cells. In other words, it was found that the mechanism by which Aurora kinase phosphorylates dynamin in the mitochondrion is preserved from primitive algae to humans," explained Matsunaga.

"Since the mitochondrial fission system found in primitive algae may be preserved in all living organisms including humans, the development of this method can make it easier to manipulate cellular activities of various organisms, as and when required," he added.


Sources: AAAS/Eurekalert! via Tokyo University of Science, Communications Biology

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 25, 2022
Cell & Molecular Biology
From sample collection straight to RT-qPCR
AUG 25, 2022
From sample collection straight to RT-qPCR
Skip the nucleic acid purification step in your cancer detection workflow. Learn more about how Thermo Fisher Scientific ...
JUL 27, 2022
Genetics & Genomics
Genetic Evidence That Alcohol Can Advance Aging
JUL 27, 2022
Genetic Evidence That Alcohol Can Advance Aging
Excessive or binge drinking can cause plenty of immediate problems for drinkers, like risky behaviors, car crashes, viol ...
AUG 15, 2022
Cell & Molecular Biology
Researchers Create the First Synthetic Mouse Embryo
AUG 15, 2022
Researchers Create the First Synthetic Mouse Embryo
Scientists have been able to create stem cells that can mimic the early stages of mouse development. The researchers use ...
SEP 15, 2022
Cell & Molecular Biology
A Totally Synthetic Microbiome is Designed & Built
SEP 15, 2022
A Totally Synthetic Microbiome is Designed & Built
In recent years, a mountain of evidence has revealed the significance of the human gut microbiome, a community of bacter ...
SEP 29, 2022
Cancer
Customer-Led Innovation: Building the CTS Xenon
SEP 29, 2022
Customer-Led Innovation: Building the CTS Xenon
How customers and R&D scientists came together across oceans and a pandemic to create a next-gen cell therapy soluti ...
SEP 21, 2022
Plants & Animals
Mutation Correction Machinery from Moss Transplanted to Human Cells
SEP 21, 2022
Mutation Correction Machinery from Moss Transplanted to Human Cells
Protein creation is essential to the normal function of healthy cells. Proteins help communicate key information to vari ...
Loading Comments...