JAN 07, 2020 10:28 AM PST

Cancer-Like Metabolism Can Fuel Brain Growth

WRITTEN BY: Carmen Leitch

During evolution, the size of the human brain increased significantly compared to other primates, a change that was particularly pronounced during early evolution, when the size of the brain was changing rapidly in humans. 

Image credit: Needpix

In the lab of Wieland Huttner, a founding director of the Max Planck Institute of Molecular Cell Biology and Genetics, scientists learned that the ARHGAP11B gene, which is carried by humans, and was also present in Neanderthals and Denisovans, plays a role in regulating stem cells in the brain. In 2015, the Huttner lab investigated gene expression in various types of stem cells in the brain. They found that the ARHGAP11B gene increased the number of basal progenitor cells that give rise to neurons; this increased number of basal brain stem cells leads to a larger brain with more folds. They suggested that this gene was likely to have played a significant role in the evolution of the complex human brain.

Scientists in the Huttner lab have now learned more about the function of the ARHGAP11B gene. It encodes for a protein that can be found in the cell’s powerhouse, an organelle called the mitochondrion.  The protein can trigger a metabolic pathway in stem cells. The pathway, called glutaminolysis, is also known to provide energy to growing cancer cells. The findings, which revealed a mechanism underlying the proliferation of brain cells in humans, have been reported in Neuron.

"We found that ARHGAP11B interacts with a protein in the membrane of mitochondria that regulates a membrane pore. As a consequence of this interaction, the pores in the membrane are closing up, preventing calcium leakage from the mitochondria. The resulting higher calcium concentration causes the mitochondria to generate chemical energy by a metabolic pathway called glutaminolysis. In this way, ARHGAP11B can trigger basal brain stem cells to form a larger pool of stem cells," explained postdoctoral researcher Takashi Namba, the first author of the study.

"An increase in glutaminolysis is a hallmark of highly proliferating cells, notably tumor cells. Thus, ARHGAP11B may have contributed to the evolutionary expansion of the human brain by inducing a cancer-like metabolism in the basal brain stem cells for a limited period during brain development," added Huttner, the senior author of the study.


Sources: Phys.org via Max Planck Society, Neuron

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 14, 2020
Clinical & Molecular DX
Cell Line Authentication Using STR Analysis
SEP 14, 2020
Cell Line Authentication Using STR Analysis
Imagine you’re studying colon cancer using a colon cell line model. After three painstaking years of research, you ...
SEP 29, 2020
Cell & Molecular Biology
What We Call Parkinson's Disease May Actually be Two Distinct Disorders
SEP 29, 2020
What We Call Parkinson's Disease May Actually be Two Distinct Disorders
Researchers have used imaging tools to show that Parkinson's disease may actually be two different diseases, one that st ...
OCT 13, 2020
Microbiology
Bacterial Biofilms Can Take on Some Animal-Like Characteristics
OCT 13, 2020
Bacterial Biofilms Can Take on Some Animal-Like Characteristics
Bacteria are everywhere, even inside of our bodies, and they are thought to date back to the early days of life on Earth ...
OCT 22, 2020
Microbiology
SARS-CoV-2 Has Multiple Routes Into Cells
OCT 22, 2020
SARS-CoV-2 Has Multiple Routes Into Cells
Since the pandemic virus SARS-CoV-2 emerged on the scene late last year, it's left a trail of devastation around the glo ...
OCT 25, 2020
Cell & Molecular Biology
Revealing More About the Genetics of Ewing Sarcoma
OCT 25, 2020
Revealing More About the Genetics of Ewing Sarcoma
Ewing sarcoma is a rare kind of cancer that tends to impact young people and occurs in bones or the tissue around them. ...
NOV 23, 2020
Cancer
Platelets May Protect Cancer Against PD-1 Therapies
NOV 23, 2020
Platelets May Protect Cancer Against PD-1 Therapies
One of cancer’s greatest tools is its ability to manipulate the immune system. Many cancer therapies have arisen t ...
Loading Comments...