JAN 16, 2020 11:43 AM PST

Understanding the Restorative Power of Sleep

WRITTEN BY: Carmen Leitch

Many people prepare for a busy day by making sure they get enough sleep the night before. Now scientists have learned more about how sleep gets us ready for the challenges of the day. Using a mouse model, researchers determined that our body’s clock relies on the extracellular matrix that provides structural and physiological support to the cells of the body. The findings have been reported in Nature Cell Biology.

Over half of the body’s weight is carried in the extracellular matrix in the form of skin, bones, tendons, and cartilage. Half of the extracellular matrix is made of collagen, which is completely formed by the time humans reach age 17. Ropes of collagen called fibrils are woven together to generate tissues, and there are two kinds; one type is thinner than the other.

"Collagen provides the body with structure and is our most abundant protein, ensuring the integrity, elasticity, and strength of the body's connective tissue," said the lead study author Professor Karl Kadler.

The thicker fibrils of collagen remain with us throughout our entire lives and don’t change after they're fully developed at age 17. The thinner fibrils, however, are made to be broken; the stress of daily activity wears them down and breaks them, but they are replenished as we sleep. In this work, the researchers monitored the fibrils in a mouse every four hours over two days using a technique called volumetric electron microscopy. When the scientists monitored a mouse model that lacked genes for the body clock, however, thick and thin fibrils were randomly fused.

"It's intuitive to think our matrix should be worn down by wear and tear, but it isn't and now we know why: our body clock makes an element which is sacrificial and can be replenished, protecting the permanent parts of the matrix,” said Kadler.

"So if you imagine the bricks in the walls of a room as the permanent part, the paint on the walls could be seen as the sacrificial part which needs to be replenished every so often. And just like you need to oil a car and keep its radiator topped up with water, these thin fibrils help maintain the body's matrix,” Kadler added. “Knowing this could have implications on understanding our biology at its most fundamental level. It might, for example, give us some deeper insight into how wounds heal, or how we age.”

The body’s clock loses precision as we get older as well, so this work may help us learn more about the aging process from these findings. You can also try sleeping in a bed in a bag to get some proper sleep.


Sources: AAAS/Eurekalert! via University of Manchester, Nature Cell Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 13, 2020
Immunology
APR 13, 2020
Macrophages: An Origin Story
Macrophages are well-known defense cells of the immune system, responsible for utilizing the cellular breakdown process ...
MAY 06, 2020
Cell & Molecular Biology
MAY 06, 2020
SARS-CoV-2 Can Infect Intestinal Cells
Once thought to cause symptoms that primarily affect the respiratory system, there has been evidence that the virus can ...
MAY 20, 2020
Cell & Molecular Biology
MAY 20, 2020
Researchers Detect a Vulnerability in Viruses
Myriad organisms share this planet, and there is an ongoing evolutionary arms race between competing traits or species, ...
JUN 03, 2020
Cell & Molecular Biology
JUN 03, 2020
A New Insulin That's Based on Cone Snail Venom
Insulin is a hormone that's produced by a specific set of cells in the pancreas, and it functions to regulate blood ...
JUN 11, 2020
Cell & Molecular Biology
JUN 11, 2020
Changes in Gut Mucus are Connected to Brain Disorders
In recent years, researchers have learned more about how important the gut is to human health. Trillions of microbes liv ...
JUL 03, 2020
Cell & Molecular Biology
JUL 03, 2020
A Gut Pathogen Moves With Help From Its Environment
Campylobacter jejuni is a foodborne bacterial pathogen that causes millions of cases of food poisoning each year.
Loading Comments...