APR 30, 2020 10:46 PM PDT

Cell Movement Increases as Interactions Increase, Contrary to Assumptions

WRITTEN BY: Carmen Leitch

New research has changed what we know about how cells interact with each other. The work, reported in the Journal of the Royal Society Interface, has indicated that contrary to what's thought, as the number of cells in an environment increases, cell movement increases.

"We were quite surprised," said the lead study author Alex Browning, a graduate student with the ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS) at the Queensland University of Technology (QUT).

"Scientists in the past have thought of cells like people. The more space you've got, the easier it is to move. Turns out, it is more complicated than that. They need more cells before they move," said the project supervisor QUT Mathematics Professor Matthew Simpson.

In this work, the researchers used mathematical models that were recently created by the team, which work well for cell biology studies. They also used a simple tool called a scratch assay, in which a colony of cells is grown in a well. A scratch is etched through the colony, making a cell-free lane in the well that separates two groups of cells. The cells can then be observed as they begin to grow back into the lane. An example of the scratch assay can be seen in the video above.

"We wanted to explore how cell density affected the dynamics of the experiment by quantifying this. Our mathematical and statistical methods allowed us to identify the nature of cell to cell interactions in the experiments that might lead to density-dependent behavior," Browning said.

It's been thought that the movement of cells does not depend on density and is unrelated to interactions between cells. This work showed otherwise. "Our results showed the opposite of what has always been assumed. It turns out, a higher density environment where there are more cell-to-cell interactions actually increased cell movement," added Browning.

The researchers ensured that they controlled the number of cells they started with in their assays, which is usually not taken into account. "Biologists do all sorts of in vitro experiments, where they grow cells in the lab. But there is no standard protocol that tells them how many cells they should put into the well to run their experiment. Our results show that it matters how many cells they use," noted study co-author and QUT mathematical biologist, Dr. Wang Jin.

"People often don't change things. The simplest thing we have done here is to change the initial number of cells," Simpson said. "By changing some of the most fundamental features of these experiments, which is so basic that no one ever questions, we actually learn an awful lot."

Sources: Phys.org via Queensland University of Technology, Journal of the Royal Society Interface

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 16, 2020
Genetics & Genomics
Hidden Genes in the SARS-CoV-2 Genome
NOV 16, 2020
Hidden Genes in the SARS-CoV-2 Genome
It's essential for organisms to use their genomes to make proteins, and the processes of transcription and translation a ...
NOV 30, 2020
Cell & Molecular Biology
Can a Scent Motivate Us to Exercise?
NOV 30, 2020
Can a Scent Motivate Us to Exercise?
People are always looking for new ways to get inspired to exercise. Now odor is being proposed as a motivational tool fo ...
DEC 08, 2020
Cardiology
The Protein Galectin-1 Could Act as a Prognostic Marker for Coronary Artery Disease
DEC 08, 2020
The Protein Galectin-1 Could Act as a Prognostic Marker for Coronary Artery Disease
The complexity of life works in many ways. Proteins, the primary things doing work in cells, can be modified after being ...
DEC 30, 2020
Clinical & Molecular DX
Of Mice and Men: Deep Learning Transforms Diagnostics
DEC 30, 2020
Of Mice and Men: Deep Learning Transforms Diagnostics
Medical imaging technologies enable physicians to take a peek under the hood, capturing snapshots of the internal organs ...
DEC 31, 2020
Microbiology
A Single-Celled Organism That Can Learn
DEC 31, 2020
A Single-Celled Organism That Can Learn
Physarum polycephalum is an unusual single-celled organism that can grow to be several square feet in size. These massiv ...
JAN 15, 2021
Microbiology
Enterovirus Images May Pave the Way to Edible Vaccines
JAN 15, 2021
Enterovirus Images May Pave the Way to Edible Vaccines
Most adenoviruses infect the respiratory system. But there are variants of these viruses that infect the gastrointestina ...
Loading Comments...