MAY 31, 2020 6:34 AM PDT

Using Nanomachines to Track the Physics of a Cell's Trajectory

WRITTEN BY: Carmen Leitch

Cells are full of a huge variety of structures and molecules that all work together, but many techniques will only allow researchers to study a few of them at any one time. Scientists have been developing tools that can provide a bigger picture of the many processes and signals moving through a cell at any time. To that end, investigators created an extremely small tracking device that can be inserted into mammalian cells. It has given scientists an unprecedented look at how one cell starts to divide to form an organism. It may also eventually provide insight into aging and diseased cells too. The work has been reported in Nature Materials.

In this study, the researchers injected a silicon-based nanodevice into mouse egg cells along with sperm. The healthy eggs were thus fertilized, so each began to divide in two as usual, but they carried the nanodevice inside as that occurred. The device has eight flexible extensions that can precisely measure the forces that push and pull the inside of the cell; this can show how the stuff inside the cell moves around.

"This is the first glimpse of the physics of any cell on this scale from within," said the study leader Professor Tony Perry of the Department of Biology and Biochemistry at the University of Bath. "It's the first time anyone has seen from the inside how cell material moves around and organizes itself."

At only 22 nanometers, the devices are as thin as some of the structural parts of the cell and they are very flexible (a mouse egg cell is larger than average cells at about 100 microns). The devices can collect information about the movement of cell cytoplasm as it becomes a two-cell embryo. This can help researchers learn more about how this relates to cell function.

"The behavior of intracellular matter is probably as influential to cell behavior as gene expression. From studies in biology and embryology, we know about certain molecules and cellular phenomena, and we have woven this information into a reductionist narrative of how things work, but now this narrative is changing," said Perry.

Biologists have written the story of the mammalian cell, but physics has been missing, Perry said. Physics can help us learn about the physical forces driving the process in cells.

"We can now look at the cell as a whole, not just the nuts and bolts that make it."

At this point in development, the embryo chromosomes (which appear red in the centre) are preparing to separate during the first cell division. The device prongs can be seen fluorescing green, with green-fluorescing actin around the periphery. / Credit: Professor Tony Perry

The scientists tracked the cell with video. "Sometimes the devices were pitched and twisted by forces that were even greater than those inside muscle cells," said Perry. "At other times, the devices moved very little, showing the cell interior had become calm. There was nothing random about these processes - from the moment you have a one-cell embryo, everything is done in a predictable way. The physics is programmed."

Sources: AAAS/Eurekalert! via University of Bath, Nature Materials

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUL 10, 2020
Cell & Molecular Biology
Gut Pathogen Linked to Reactive Arthritis
JUL 10, 2020
Gut Pathogen Linked to Reactive Arthritis
When bacteria escape from the gastrointestinal tract, they can cause serious health problems.
JUL 26, 2020
Drug Discovery & Development
AI Creates Proteins that Rival Those in Nature
JUL 26, 2020
AI Creates Proteins that Rival Those in Nature
Proteins are crucial for the function of cells in living organisms. Now, researchers have developed a machine leaning-le ...
JUL 26, 2020
Neuroscience
How COVID-19 Causes Loss of Smell
JUL 26, 2020
How COVID-19 Causes Loss of Smell
Temporary loss of smell, known as anosmia, is one of the most common early indicators of COVID-19. Although some say it ...
AUG 02, 2020
Genetics & Genomics
In a First, Researchers Edit Cephalopod Genes
AUG 02, 2020
In a First, Researchers Edit Cephalopod Genes
Using the CRISPR-Cas9 gene-editing tool, researchers have knocked out a gene in a cephalopod for the first time.
AUG 22, 2020
Cell & Molecular Biology
A New Way to Describe Enzyme Kinetics
AUG 22, 2020
A New Way to Describe Enzyme Kinetics
The  Michaelis-Menten equation is classic, but it may not be sufficient to describe all enzymatic reactions, new wo ...
SEP 04, 2020
Cancer
Attacking Cancer's Metabolism: A New Take on Fermented Wheat Germ Extract
SEP 04, 2020
Attacking Cancer's Metabolism: A New Take on Fermented Wheat Germ Extract
One of the hallmarks of evolution is the oxidative phosphorylation metabolic system. Not only does it produce energy in ...
Loading Comments...