MAY 31, 2020 6:34 AM PDT

Using Nanomachines to Track the Physics of a Cell's Trajectory

WRITTEN BY: Carmen Leitch

Cells are full of a huge variety of structures and molecules that all work together, but many techniques will only allow researchers to study a few of them at any one time. Scientists have been developing tools that can provide a bigger picture of the many processes and signals moving through a cell at any time. To that end, investigators created an extremely small tracking device that can be inserted into mammalian cells. It has given scientists an unprecedented look at how one cell starts to divide to form an organism. It may also eventually provide insight into aging and diseased cells too. The work has been reported in Nature Materials.

In this study, the researchers injected a silicon-based nanodevice into mouse egg cells along with sperm. The healthy eggs were thus fertilized, so each began to divide in two as usual, but they carried the nanodevice inside as that occurred. The device has eight flexible extensions that can precisely measure the forces that push and pull the inside of the cell; this can show how the stuff inside the cell moves around.

"This is the first glimpse of the physics of any cell on this scale from within," said the study leader Professor Tony Perry of the Department of Biology and Biochemistry at the University of Bath. "It's the first time anyone has seen from the inside how cell material moves around and organizes itself."

At only 22 nanometers, the devices are as thin as some of the structural parts of the cell and they are very flexible (a mouse egg cell is larger than average cells at about 100 microns). The devices can collect information about the movement of cell cytoplasm as it becomes a two-cell embryo. This can help researchers learn more about how this relates to cell function.

"The behavior of intracellular matter is probably as influential to cell behavior as gene expression. From studies in biology and embryology, we know about certain molecules and cellular phenomena, and we have woven this information into a reductionist narrative of how things work, but now this narrative is changing," said Perry.

Biologists have written the story of the mammalian cell, but physics has been missing, Perry said. Physics can help us learn about the physical forces driving the process in cells.

"We can now look at the cell as a whole, not just the nuts and bolts that make it."

At this point in development, the embryo chromosomes (which appear red in the centre) are preparing to separate during the first cell division. The device prongs can be seen fluorescing green, with green-fluorescing actin around the periphery. / Credit: Professor Tony Perry

The scientists tracked the cell with video. "Sometimes the devices were pitched and twisted by forces that were even greater than those inside muscle cells," said Perry. "At other times, the devices moved very little, showing the cell interior had become calm. There was nothing random about these processes - from the moment you have a one-cell embryo, everything is done in a predictable way. The physics is programmed."

Sources: AAAS/Eurekalert! via University of Bath, Nature Materials

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 25, 2021
Microbiology
Plant-Eating Microbes Expand the Tree of Life
APR 25, 2021
Plant-Eating Microbes Expand the Tree of Life
After microbes called archaea were discovered in the 1970s, a branch was added to the tree of life after some debate, wh ...
MAY 09, 2021
Microbiology
Bacteria Can Read Genes Forwards or Backwards
MAY 09, 2021
Bacteria Can Read Genes Forwards or Backwards
One of the most basic processes in life in the creation of proteins from mRNA molecules, which are transcribed from DNA. ...
MAY 15, 2021
Drug Discovery & Development
New Weight Loss Drug Converts Energy-Storing Fat into Energy-Burning Fat
MAY 15, 2021
New Weight Loss Drug Converts Energy-Storing Fat into Energy-Burning Fat
According to the World Health Organization (WHO), in 2016, around 2 billion adults around the world were overweight ...
MAY 20, 2021
Genetics & Genomics
Mitochondrial DNA May be Affecting More Traits Than we Knew
MAY 20, 2021
Mitochondrial DNA May be Affecting More Traits Than we Knew
While the vast majority of our genes are in the genome that's held in the nuclei of cells, mitochondria are also known t ...
JUN 11, 2021
Cell & Molecular Biology
Bad Fat in the Tumor Microenvironment May Disrupt Killer T Cells
JUN 11, 2021
Bad Fat in the Tumor Microenvironment May Disrupt Killer T Cells
The immune system can detect and destroy pathogenic and cancerous cells, but sometimes those dangerous cells can evade t ...
JUN 16, 2021
Microbiology
DNA - It's What's for Dinner (For Some Bacteria)
JUN 16, 2021
DNA - It's What's for Dinner (For Some Bacteria)
There may be a trillion species of microbes on the planet, so clearly there's still a lot we don't know about these micr ...
Loading Comments...