JUN 21, 2020 1:02 AM PDT

Researchers Learn What Drives a Plant 'Erection'

WRITTEN BY: Carmen Leitch

Pollen is produced by trees, grasses, and weeds, and it's a way for plants to reproduce by disseminating their genetic material. Male pollen grains are often carried by the wind or insects, and when they land on the female part of a plant, fertilization happens. The male pollen grain can become several thousand times longer as it seeks a female egg cell to transfer its sperm cells to. Researchers have now learned more about the growth of these pollen tubes, which may teach us more about other aspects of biology like growth in human neurons. They determined that the extension of this plant erection is driven by a proton pump-powered electrical circuit. The findings have been reported in Nature Communications.

"We were taken aback by how extremely advanced the plant's fertilization mechanism really is. From textbooks, we understand that pollen tubes grow and push forth by continually building additional floors upon the cell skeleton, like a growing scaffold. However, very little was known about the underlying mechanisms of this enormous growth. Our work has made the world a bit wiser," said Professor Michael Broberg Palmgren from the Department of Plant and Environmental Sciences.

The pollen tube can 'sniff out' an egg cell that lies inside the female receptor to create a seed. The probing of the tube is called tip growth, where continuous extension occurs. In a weed called the thale cress, it reached about three millimeters a day. "The pollen tube is not a rigid tube. It is dynamic and can redirect as it searches for an egg," explained Michael Broberg Palmgren.

In this study, the researchers altered a group of plant genes called AHA, which generate the proton pumps. These structures control a balance of acids and bases to generate voltage across the membrane of cells. The scientists turned various combinations of the genes off and studied the outcome.

"In experiments, we were able to see that the 'mutant pollen tubes,' in which we had switched off the genes, were dramatically delayed in their growth and had difficulty finding their way," noted Professor Palmgren.

In this type of basic research, we may be able to predict what it will tell us about other aspects of biology in the future. But, the mechanisms underlying tip growth may provide insight into the growth of nerves, suggested the investigators.

"Very little is known about what controls nerve growth—which is hugely important for recovery from nerve or brain damage. Here, our result might prove useful for better understanding the process of tip growth, which is how the human nervous system grows as well," said Palmgren. "The more we investigate, the more advanced plants turn out to be. There are no arguments to suggest that plants are any less than us humans."

Sources: Phys.org via University of Copenhagen, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 19, 2020
Cardiology
Examining a Possible Link Between Atherosclerosis and Inflammation
NOV 19, 2020
Examining a Possible Link Between Atherosclerosis and Inflammation
The immune system’s primary duty is to protect the body from dangerous invaders. Many don’t know that it als ...
DEC 03, 2020
Space & Astronomy
Health Issues from Spaceflight Caused by Mitochondria
DEC 03, 2020
Health Issues from Spaceflight Caused by Mitochondria
Spending an extended time in space is known to impact various aspects of health, from muscle and bone regeneration to th ...
DEC 14, 2020
Cell & Molecular Biology
Modeling Embryonic Development in the Laboratory
DEC 14, 2020
Modeling Embryonic Development in the Laboratory
Max Planck Institute for Molecular Genetics researchers have created a model that will advance the study of development ...
DEC 25, 2020
Cell & Molecular Biology
Immune Protein Has a Surprising Role in Cell Adhesion
DEC 25, 2020
Immune Protein Has a Surprising Role in Cell Adhesion
During development, cells multiply to grow the animal, and those cells have to organize properly and differentiate into ...
DEC 30, 2020
Clinical & Molecular DX
Of Mice and Men: Deep Learning Transforms Diagnostics
DEC 30, 2020
Of Mice and Men: Deep Learning Transforms Diagnostics
Medical imaging technologies enable physicians to take a peek under the hood, capturing snapshots of the internal organs ...
JAN 05, 2021
Immunology
Immune Imbalances Dictate COVID Symptom Severity
JAN 05, 2021
Immune Imbalances Dictate COVID Symptom Severity
COVID symptoms. “As it is often the case for pathogenic infections, the host immune system is a key player in vira ...
Loading Comments...