JUN 21, 2020 1:02 AM PDT

Researchers Learn What Drives a Plant 'Erection'

WRITTEN BY: Carmen Leitch

Pollen is produced by trees, grasses, and weeds, and it's a way for plants to reproduce by disseminating their genetic material. Male pollen grains are often carried by the wind or insects, and when they land on the female part of a plant, fertilization happens. The male pollen grain can become several thousand times longer as it seeks a female egg cell to transfer its sperm cells to. Researchers have now learned more about the growth of these pollen tubes, which may teach us more about other aspects of biology like growth in human neurons. They determined that the extension of this plant erection is driven by a proton pump-powered electrical circuit. The findings have been reported in Nature Communications.

"We were taken aback by how extremely advanced the plant's fertilization mechanism really is. From textbooks, we understand that pollen tubes grow and push forth by continually building additional floors upon the cell skeleton, like a growing scaffold. However, very little was known about the underlying mechanisms of this enormous growth. Our work has made the world a bit wiser," said Professor Michael Broberg Palmgren from the Department of Plant and Environmental Sciences.

The pollen tube can 'sniff out' an egg cell that lies inside the female receptor to create a seed. The probing of the tube is called tip growth, where continuous extension occurs. In a weed called the thale cress, it reached about three millimeters a day. "The pollen tube is not a rigid tube. It is dynamic and can redirect as it searches for an egg," explained Michael Broberg Palmgren.

In this study, the researchers altered a group of plant genes called AHA, which generate the proton pumps. These structures control a balance of acids and bases to generate voltage across the membrane of cells. The scientists turned various combinations of the genes off and studied the outcome.

"In experiments, we were able to see that the 'mutant pollen tubes,' in which we had switched off the genes, were dramatically delayed in their growth and had difficulty finding their way," noted Professor Palmgren.

In this type of basic research, we may be able to predict what it will tell us about other aspects of biology in the future. But, the mechanisms underlying tip growth may provide insight into the growth of nerves, suggested the investigators.

"Very little is known about what controls nerve growth—which is hugely important for recovery from nerve or brain damage. Here, our result might prove useful for better understanding the process of tip growth, which is how the human nervous system grows as well," said Palmgren. "The more we investigate, the more advanced plants turn out to be. There are no arguments to suggest that plants are any less than us humans."

Sources: Phys.org via University of Copenhagen, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 10, 2020
Immunology
Natural Killer Cells with "Memory" to Target Hepatitis B
JUN 10, 2020
Natural Killer Cells with "Memory" to Target Hepatitis B
An immune cell type thought to be restricted to the general, first response to pathogenic invaders may actually have som ...
JUN 15, 2020
Immunology
Experimental MS Treatment Relies on "Retraining" the Immune System
JUN 15, 2020
Experimental MS Treatment Relies on "Retraining" the Immune System
When the immune system goes awry and fails to regulate itself, immune cells may attack the body’s own tissues. Sci ...
JUN 16, 2020
Immunology
Stronger Skeletal Muscles May Reflect A Sturdy Immune System
JUN 16, 2020
Stronger Skeletal Muscles May Reflect A Sturdy Immune System
Individuals struggling to recover from chronic infections and cancer usually experience reduced immune strength and weig ...
JUN 21, 2020
Genetics & Genomics
Controlling CRISPR Rapidly With Light
JUN 21, 2020
Controlling CRISPR Rapidly With Light
Researchers have been working on ways to use light to control the gene-editing tool CRISPR for several years.
JUN 25, 2020
Cancer
Examining the Glioma Influenced Immune System
JUN 25, 2020
Examining the Glioma Influenced Immune System
The human body is a complicated network of systems and signals.  Many systems regulate themselves or others in vari ...
AUG 02, 2020
Microbiology
Examining the Existence of Organelles in Bacteria
AUG 02, 2020
Examining the Existence of Organelles in Bacteria
Cells can be grouped into two general categories: prokaryotic, which make up microbes like bacteria and archaea, or euka ...
Loading Comments...