JUN 26, 2020 7:23 PM PDT

New Method Identifies Different Types of Nerve Support Cells

WRITTEN BY: Carmen Leitch

Neurons are a well-studied cell type in the brain. But another type of brain cell called glia has received less attention, even though they serve a critical function, acting as a support system for neurons. Glial cells do not send the electrical signals that neurons do, but they help ensure that they're transmitted. There are specific types of glial cells that function at the synapse - the point of contact between neurons, where biochemical signals are sent.

Two molecular markers, indicated by the red and green fluorescence, are found together only in synaptic Schwann cells. Together they offer a "bar code" that identifies Schwann cells, an important subtype of glia. Credit  Valdez Lab / Center for Translational Neuroscience / Brown University

Scientists have now found a way to differentiate between specific kinds of glial cells, which offer new methods for studying their function. The work has been reported in eLife. It may help scientists learn more about how glial cells are involved in the restoration of nerve function after injury, aging, or disease.

"This discovery will serve as a springboard to addressing fundamental questions and developing assays to speed the discovery of therapeutics intended to preserve and restore the normal function of neuronal circuits," said the study leader Gregorio Valdez, an associate professor of molecular biology, cell biology and biochemistry at Brown University, who is affiliated with the new Center for Translational Neuroscience.

This work has shown that one type of glial cell that is found where muscle and nerve fibers meet, called Schwann cells, are the only cells in muscles that produce two specific molecules. These molecules can now act as a kind of identifier that can pinpoint this subtype of cell, said Valdez.

"What this means is that we can finally figure out how all three cellular constituents of the synapse -- neurons, muscle, and glia -- talk to each," Valdez said. "We now have a unique and important tool for identifying this critical component of the synapse. This is essential for knowing when and where to target to ensure synapses function appropriately."

This tool could prove especially useful in future work; Valdez noted that it has potential in research that investigates the pathology of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), or how movement degenerates as we age, for example. This method may also help identify other markers for different types of glial cells.

"While our primary focus was the neuromuscular synapse, we also gathered initial evidence indicating that synaptic glia cells in the brain can be labeled and targeted using the same approach," said Valdez. "If true, this discovery could be of immense consequence for treating a myriad of brain conditions, including those involving cognitive decline due to normal aging and Alzheimer's Disease."

Sources: AAAS/Eurekalert! via Brown University, eLife

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 21, 2020
Neuroscience
Considerations for Lab Managers in Choosing a Microplate Reader
APR 21, 2020
Considerations for Lab Managers in Choosing a Microplate Reader
In today's high-tech, digitized laboratory environments, nobody pays very much attention to the humble plastic micro ...
MAY 10, 2020
Genetics & Genomics
Towards a Targeted Elimination of Leukemic Cells
MAY 10, 2020
Towards a Targeted Elimination of Leukemic Cells
Our blood carries many types of critical cells, including platelets, red blood cells, and white blood cells, which are m ...
MAY 12, 2020
Genetics & Genomics
Learning More About Why Some Diseases Have a Sex Bias
MAY 12, 2020
Learning More About Why Some Diseases Have a Sex Bias
The biological differences between men and women go beyond the things we're aware of like the sex chromosomes and hormon ...
JUN 11, 2020
Genetics & Genomics
Restoring Hearing by Editing Only One Base of a Gene
JUN 11, 2020
Restoring Hearing by Editing Only One Base of a Gene
Errors in genes can cause serious diseases. Some of those errors are large, while others are due to a change in only one ...
JUN 14, 2020
Genetics & Genomics
Denisovan DNA Influences the Immune System of Oceanian People
JUN 14, 2020
Denisovan DNA Influences the Immune System of Oceanian People
As species in the genus homo evolved, our ancient ancestors interbred with populations of Neanderthals and Denisovans.
JUL 09, 2020
Clinical & Molecular DX
Women's Hair Holds Fertility Clues
JUL 09, 2020
Women's Hair Holds Fertility Clues
A new predictive tool for measuring women’s fertility uses an unlikely biological source for answers: hair. During ...
Loading Comments...