JUL 21, 2020 6:46 PM PDT

Researchers ID New Aging Pathways & Potential Ways to Alter Them

WRITTEN BY: Carmen Leitch

The length of a person's life can be affected by many factors, but the natural lifespan is dependent on how the cells in our body age. Researchers are learning more about the biological processes that underlie aging. Reporting in Science, investigators have used a common model of molecular biology, the budding yeast Saccharomyces cerevisiae to identify two pathways that are connected to aging. Their work suggested that by genetically altering these pathways, lifespan could potentially be extended.

In this work, the researchers learned that even though yeast cells had a similar genetic background and lived in the same environment, they aged in dramatically different ways at the molecular and cellular level. The scientists determined that around half of the cells under investigation were aging because of a slow breakdown in the stability of the nucleolus. The nucleolus is an organelle in the cell where important parts of the cell's protein factories are created. Aging in the other half of the cells was related to dysfunction in another organelle called the mitochondria, known as the powerhouse of the cell.

"To understand how cells make these decisions, we identified the molecular processes underlying each aging route and the connections among them, revealing a molecular circuit that controls cell aging, analogous to electric circuits that control home appliances," said the senior author of the study Nan Hao, an associate professor in the Section of Molecular Biology, Division of Biological Sciences.

The research suggested that early on in a cell's life, it sets out on a nucleolar or mitochondrial course, which it follows throughout its life and into death. A master genetic circuit was identified that controls these processes.

The scientists used a combination of techniques including microfluidics and computational tools, which showed that the genetic circuit can be manipulated. It may be possible to set an entirely new course for aging and dramatically alter the results.

"Our study raises the possibility of rationally designing gene or chemical-based therapies to reprogram how human cells age, with a goal of effectively delaying human aging and extending human healthspan," said Hao.

Yeast cells with the same DNA under the same environment show different structures of mitochondria (green) and nucleolus (red), which may underlie the causes of different aging paths. Single and double arrowheads point to two cells with distinct mitochondrial and nucleolar morphologies. / Credit: Hao Lab, UC San Diego

The scientists are planning to test their findings in more complex models, potentially including organisms and human cells. They may be able to generate new ways to alter the pathways of aging and extend longevity.

"Much of the work featured in this paper benefits from a strong interdisciplinary team that was assembled," said study coauthor Lorraine Pillus, Biological Sciences Professor of Molecular Biology. "One great aspect of the team is that we not only do the modeling but we then do the experimentation to determine whether the model is correct or not. These iterative processes are critical for the work that we are doing."

Sources: AAAS/Eurekalert! via University of California - San Diego, Science

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 29, 2020
Cell & Molecular Biology
Engineering 'Smart' Cells to Kill Cancer
NOV 29, 2020
Engineering 'Smart' Cells to Kill Cancer
Cancer researchers have long been searching for a way to target cancer cells while ignoring healthy cells. A team of sci ...
JAN 05, 2021
Genetics & Genomics
Integrator: A New Type of Transcriptional Control is Discovered
JAN 05, 2021
Integrator: A New Type of Transcriptional Control is Discovered
The study of the genome once seemed like a straightforward process: a specific short sequence of three nucleotide bases ...
JAN 05, 2021
Microbiology
Finding ways to Culture Bacteria From Extreme Environments
JAN 05, 2021
Finding ways to Culture Bacteria From Extreme Environments
In order to study bacteria, it has to be grown in the lab. That’s no problem for many common strains of bacteria t ...
JAN 17, 2021
Cell & Molecular Biology
How a Nutrient Can Aid in Infection Prevention
JAN 17, 2021
How a Nutrient Can Aid in Infection Prevention
Antibiotic-resistant microbes are considered to be a serious threat to public health, one of many reasons why it's impor ...
JAN 17, 2021
Genetics & Genomics
New Insights Into Kabuki Syndrome
JAN 17, 2021
New Insights Into Kabuki Syndrome
Kabuki syndrome is a rare multisystemic disorder that causes delays in growth, distinctive facial features, short statur ...
JAN 26, 2021
Cell & Molecular Biology
Diagnostic Tool Could ID 20% of Autism Cases
JAN 26, 2021
Diagnostic Tool Could ID 20% of Autism Cases
Scientists may have created a diagnostic test that can identify as many as one-fifth of potential autism spectrum disord ...
Loading Comments...